bssm: Bayesian Inference of Non-linear and Non-Gaussian State Space Models in R

被引:0
|
作者
Helske, Jouni [1 ]
Vihola, Matti [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, Jyvaskyla, Finland
来源
R JOURNAL | 2021年 / 13卷 / 02期
基金
芬兰科学院;
关键词
ALGORITHMS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present an R package bssm for Bayesian non-linear/non-Gaussian state space modeling. Unlike the existing packages, bssm allows for easy-to-use approximate inference based on Gaussian approximations such as the Laplace approximation and the extended Kalman filter. The package also accommodates discretely observed latent diffusion processes. The inference is based on fully automatic, sampling post-correction to eliminate any approximation bias. The package also implements a direct pseudo-marginal MCMC and a delayed acceptance pseudo-marginal MCMC using intermediate approximations. The package offers an easy-to-use interface to define models with linear-Gaussian state dynamics with non-Gaussian observation models and has an Rcpp interface for specifying custom non-linear and diffusion models.
引用
收藏
页码:578 / 589
页数:12
相关论文
共 50 条
  • [21] Partially observed information and inference about non-Gaussian mixed linear models
    Jiang, JM
    ANNALS OF STATISTICS, 2005, 33 (06): : 2695 - 2731
  • [22] Non-linear, non-Gaussian estimation for INS/GPS integration
    Thanh-Trung Duong
    Chiang, Kai-Wei
    PROCEEDINGS OF THE 24TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS 2011), 2011, : 946 - 953
  • [23] Validation gating for non-linear non-gaussian target tracking
    Bailey, Tim
    Upcroft, Ben
    Durrant-Whyte, Hugh
    2006 9TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2006, : 269 - 274
  • [24] Non-Linear, Non-Gaussian Estimation for INS/GPS Integration
    Thanh Trung Duong
    Chiang, Kai Wei
    SENSOR LETTERS, 2012, 10 (5-6) : 1081 - 1086
  • [25] Least-squares independence regression for non-linear causal inference under non-Gaussian noise
    Makoto Yamada
    Masashi Sugiyama
    Jun Sese
    Machine Learning, 2014, 96 : 249 - 267
  • [27] Least-squares independence regression for non-linear causal inference under non-Gaussian noise
    Yamada, Makoto
    Sugiyama, Masashi
    Sese, Jun
    MACHINE LEARNING, 2014, 96 (03) : 249 - 267
  • [28] Dependence Minimizing Regression with Model Selection for Non-Linear Causal Inference under Non-Gaussian Noise
    Yamada, Makoto
    Sugiyama, Masashi
    PROCEEDINGS OF THE TWENTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-10), 2010, : 643 - 648
  • [29] A Gaussian and non-Gaussian stochastic linearization of a non-linear oscillator governing equation
    Culla, A.
    Structural Dynamics - EURODYN 2005, Vols 1-3, 2005, : 2121 - 2127
  • [30] State Space Gaussian Processes with Non-Gaussian Likelihood
    Nickisch, Hannes
    Solin, Arno
    Grigorievskiy, Alexander
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80