Optimal convergence analysis of Crank-Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics

被引:17
|
作者
Dong, Xiaojing [1 ,2 ]
He, Yinnian [3 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Hunan Key Lab Computat & Simulat Sci & Engn, Key Lab Intelligent Comp & Informat Proc,Minist E, Xiangtan 411105, Peoples R China
[2] Inst Appl Phys & Computat Math, POB 8009, Beijing 100088, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MHD equations; Semi-implicit scheme; Crank-Nicolson extrapolation scheme; Stability and convergence; Finite element method; FINITE-ELEMENT APPROXIMATION; NAVIER-STOKES PROBLEM; ITERATIVE METHODS; STATIONARY; DISCRETIZATION; STABILITY; EQUATIONS;
D O I
10.1016/j.camwa.2018.08.060
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper considers a Crank-Nicolson extrapolation scheme based on mixed finite element method to solve the three-dimensional incompressible magnetohydrodynamics (MHD) equations. We prove that the fully discrete scheme is almost unconditionally stable and convergent, i.e., stable and convergent when the time step is less than or equal to a constant. By a new negative norm technique, the optimal error estimates in L-2-norm are derived. Meanwhile, the numerical investigations provide a sufficient support for the theoretical analysis. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2678 / 2700
页数:23
相关论文
共 50 条
  • [1] Numerical Analysis of the Crank-Nicolson Extrapolation Time Discrete Scheme for Magnetohydrodynamics Flows
    Zhang, Yuhong
    Hou, Yanren
    Shan, Li
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 2169 - 2208
  • [2] A Crank-Nicolson leap-frog scheme for the unsteady incompressible magnetohydrodynamics equations
    Si, Zhiyong
    Wang, Mingyi
    Wang, Yunxia
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [3] Convergence of the Crank-Nicolson extrapolation scheme for the Korteweg-de Vries equation
    Wang, Pengfei
    Huang, Pengzhan
    [J]. APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 88 - 96
  • [4] APPLICATION OF RICHARDSON EXTRAPOLATION WITH THE CRANK-NICOLSON SCHEME FOR MULTI-DIMENSIONAL ADVECTION
    Zlatev, Zahari
    Dimov, Ivan
    Farago, Istvan
    Georgiev, Krassimir
    Havasi, Agnes
    Ostromsky, Tzvetan
    [J]. APPLICATIONS OF MATHEMATICS 2013, 2013, : 248 - 256
  • [5] Convergence analysis of Crank-Nicolson extrapolated fully discrete scheme for thermally coupled incompressible magnetohydrodynamic system
    Ding, Qianqian
    Long, Xiaonian
    Mao, Shipeng
    [J]. APPLIED NUMERICAL MATHEMATICS, 2020, 157 : 522 - 543
  • [6] A NOTE ON THE CONVERGENCE OF A CRANK-NICOLSON SCHEME FOR THE KDV EQUATION
    Dutta, Rajib
    Risebro, Nils Henrik
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 657 - 675
  • [7] Modified Crank-Nicolson Scheme with Richardson Extrapolation for One-Dimensional Heat Equation
    Merga, Feyisa Edosa
    Chemeda, Hailu Muleta
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (05): : 1725 - 1734
  • [8] RICHARDSON EXTRAPOLATION OF THE CRANK-NICOLSON SCHEME FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS
    Xu, Yafei
    Zhao, Weidong
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2024, 21 (02) : 268 - 294
  • [9] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    冯新龙
    何银年
    [J]. Acta Mathematica Scientia, 2016, 36 (01) : 124 - 138
  • [10] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    Feng, Xinlong
    He, Yinnian
    [J]. ACTA MATHEMATICA SCIENTIA, 2016, 36 (01) : 124 - 138