A Crank-Nicolson leap-frog scheme for the unsteady incompressible magnetohydrodynamics equations

被引:0
|
作者
Si, Zhiyong [1 ]
Wang, Mingyi [1 ,2 ]
Wang, Yunxia [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Peoples R China
关键词
Magnetohydrodynamics equations; Crank-Nicolson leap-frog scheme; Stability analysis; Optimal error estimates; FINITE-ELEMENT APPROXIMATION; NAVIER-STOKES PROBLEM; EXTRAPOLATION SCHEME; CONVERGENCE ANALYSIS; MAXWELLS EQUATIONS; 2ND-ORDER; STABILITY; STATIONARY; FLOWS;
D O I
10.1016/j.cnsns.2024.108016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a Crank-Nicolson leap-frog (CNLF) scheme for the unsteady incompressible magnetohydrodynamics (MHD) equations. The spatial discretization adopts the Galerkin finite element method (FEM), and the temporal discretization employs the CNLF method for linear terms and the semi -implicit method for nonlinear terms. The first step uses Stokes style's scheme, the second step employs the Crank-Nicolson extrapolation scheme, and others apply the CNLF scheme. We establish that the fully discrete scheme is stable and convergent when the time step is less than or equal to a positive constant. Firstly, we show the stability of the scheme by means of the mathematical induction method. Next, we focus on analyzing error estimates of the CNLF method, where the convergence order of the velocity and magnetic field reach second-order accuracy, and the pressure is the first-order convergence accuracy. Finally, the numerical examples demonstrate the optimal error estimates of the proposed algorithm.
引用
收藏
页数:32
相关论文
共 50 条
  • [1] Stability and convergence analysis of a Crank-Nicolson leap-frog scheme for the unsteady incompressible Navier-Stokes equations
    Tang, Qili
    Huang, Yunqing
    [J]. APPLIED NUMERICAL MATHEMATICS, 2018, 124 : 110 - 129
  • [2] INSTABILITY OF LEAP-FROG AND CRANK-NICOLSON APPROXIMATIONS OF A NONLINEAR PARTIAL DIFFERENTIAL EQUATION
    FORNBERG, B
    [J]. MATHEMATICS OF COMPUTATION, 1973, 27 (121) : 45 - 57
  • [3] Crank-Nicolson Leap-Frog Time Stepping Decoupled Scheme for the Fluid-Fluid Interaction Problems
    Qian, Lingzhi
    Feng, Xinlong
    He, Yinnian
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2020, 84 (01)
  • [4] THE UNSTABLE MODE IN THE CRANK-NICOLSON LEAP -FROG METHOD IS STABLE
    Hurl, Nick
    Layton, William
    Li, Yong
    Moraiti, Marina
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 753 - 762
  • [5] Crank–Nicolson Leap-Frog Time Stepping Decoupled Scheme for the Fluid–Fluid Interaction Problems
    Lingzhi Qian
    Xinlong Feng
    Yinnian He
    [J]. Journal of Scientific Computing, 2020, 84
  • [6] Optimal convergence analysis of Crank-Nicolson extrapolation scheme for the three-dimensional incompressible magnetohydrodynamics
    Dong, Xiaojing
    He, Yinnian
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (11-12) : 2678 - 2700
  • [7] A Second-Order Crank-Nicolson Leap-Frog Scheme for the Modified Phase Field Crystal Model with Long-Range Interaction
    Wu, Chunya
    Feng, Xinlong
    Qian, Lingzhi
    [J]. ENTROPY, 2022, 24 (11)
  • [8] AN ARTIFICIAL COMPRESSIBILITY CRANK-NICOLSON LEAP-FROG METHOD FOR THE STOKES-DARCY MODEL AND APPLICATION IN ENSEMBLE SIMULATIONS
    Jiang, Nan
    Li, Ying
    Yang, Huanhuan
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (01) : 401 - 428
  • [9] Numerical Analysis of the Crank-Nicolson Extrapolation Time Discrete Scheme for Magnetohydrodynamics Flows
    Zhang, Yuhong
    Hou, Yanren
    Shan, Li
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (06) : 2169 - 2208
  • [10] On the Crank-Nicolson scheme once again
    Jan A. van Casteren
    [J]. Journal of Evolution Equations, 2011, 11 : 457 - 476