CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM

被引:8
|
作者
Feng, Xinlong [1 ]
He, Yinnian [2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Xi An Jiao Tong Univ, Ctr Computat Geosci, Sch Math & Stat, Xian 710049, Peoples R China
关键词
nonlinear parabolic problem; Crank-Nicolson scheme; Newton method; finite element method; optimal error estimate; NAVIER-STOKES EQUATIONS; FINITE-ELEMENT APPROXIMATION; GALERKIN METHODS; ERROR ANALYSIS; NEWTON METHODS; DISCRETIZATION;
D O I
10.1016/S0252-9602(15)30083-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the Crank-Nicolson/Newton scheme for solving numerically second order nonlinear parabolic problem is proposed. The standard Galerkin finite element method based on P-2 conforming elements is used to the spatial discretization of the problem and the Crank-Nicolson/Newton scheme is applied to the time discretization of the resulted finite element equations. Moreover, assuming the appropriate regularity of the exact solution and the finite element solution, we obtain optimal error estimates of the fully discrete Crank-Nicolson/Newton scheme of nonlinear parabolic problem. Finally, numerical experiments are presented to show the efficient performance of the proposed scheme.
引用
收藏
页码:124 / 138
页数:15
相关论文
共 50 条
  • [1] CONVERGENCE OF THE CRANK-NICOLSON/NEWTON SCHEME FOR NONLINEAR PARABOLIC PROBLEM
    冯新龙
    何银年
    [J]. Acta Mathematica Scientia, 2016, 36 (01) : 124 - 138
  • [2] A NOTE ON THE CONVERGENCE OF A CRANK-NICOLSON SCHEME FOR THE KDV EQUATION
    Dutta, Rajib
    Risebro, Nils Henrik
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2016, 13 (05) : 657 - 675
  • [3] Optimal Convergence of the Newton Iterative Crank-Nicolson Finite Element Method for the Nonlinear Schrodinger Equation
    Hu, Hanzhang
    Li, Buyang
    Zou, Jun
    [J]. COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 591 - 612
  • [4] Multisymplecticity of Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Chen, JB
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2002, 71 (09) : 2348 - 2349
  • [5] The impact of a natural time change on the convergence of the Crank-Nicolson scheme
    Reisinger, Christoph
    Whitley, Alan
    [J]. IMA JOURNAL OF NUMERICAL ANALYSIS, 2014, 34 (03) : 1156 - 1192
  • [6] The Splitting Crank-Nicolson Scheme with Intrinsic Parallelism for Solving Parabolic Equations
    Xue, Guanyu
    Gong, Yunjie
    Feng, Hui
    [J]. JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [7] Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrodinger equation
    Cai, Wenjun
    Wang, Yushun
    Song, Yongzhong
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (10) : 2403 - 2411
  • [8] Crank-Nicolson Scheme for Solving the Modified Nonlinear Schrodinger Equation
    Alanazi, A. A.
    Alamri, Sultan Z.
    Shafie, S.
    Puzi, Shazirawati Mohd
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2021, 31 (08) : 2789 - 2817
  • [9] AN ANISOTROPIC ERROR ESTIMATOR FOR THE CRANK-NICOLSON METHOD: APPLICATION TO A PARABOLIC PROBLEM
    Lozinski, Alexei
    Picasso, Marco
    Prachittham, Virabouth
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2757 - 2783
  • [10] On the Crank-Nicolson scheme once again
    Jan A. van Casteren
    [J]. Journal of Evolution Equations, 2011, 11 : 457 - 476