MULTIDIMENSIONAL STABILITY OF PYRAMIDAL TRAVELING FRONTS IN DEGENERATE FISHER-KPP MONOSTABLE AND COMBUSTION EQUATIONS

被引:0
|
作者
Wu, Denghui [1 ]
Bu, Zhen-hui [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
关键词
pyramidal traveling front; multidimen-sional stability; degenerate Fisher-KPP monostable nonlinearity; combustion nonlinearity; Reaction-diffusion equation; REACTION-DIFFUSION EQUATIONS; GLOBAL STABILITY; WAVES; EXISTENCE; DECAY;
D O I
10.3934/era.2021058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, multidimensional stability of pyramidal traveling fronts are studied to the reaction-diffusion equations with degenerate FisherKPP monostable and combustion nonlinearities. By constructing sup ersolutions and subsolutions coupled with the comparison principle, we firstly prove that under any initial perturbation (possibly large) decaying at space infinity, the three-dimensional pyramidal traveling fronts are asymptotically stable in weighted L-infinity spaces on R-n (n >= 4). Secondly, we show that under general bounded perturbations (even very small), the pyramidal traveling fronts are not asymptotically stable by constructing a solution which oscillates permanently between two three-dimensional pyramidal traveling fronts on R-4.
引用
收藏
页码:3721 / 3740
页数:20
相关论文
共 50 条
  • [1] STABILITY OF PYRAMIDAL TRAVELING FRONTS IN THE DEGENERATE MONOSTABLE AND COMBUSTION EQUATIONS I
    Bu, Zhen-Hui
    Wang, Zhi-Cheng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (05) : 2395 - 2430
  • [2] Stability of pyramidal traveling fronts in the degenerate monostable and combustion equations II
    Bu, Zhen-Hui
    Ma, Lu-Yi
    Wang, Zhi-Cheng
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 47 : 45 - 67
  • [3] Multidimensional stability of traveling fronts in combustion and non-KPP monostable equations
    Bu, Zhen-Hui
    Wang, Zhi-Cheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (01):
  • [4] Multidimensional stability of traveling fronts in combustion and non-KPP monostable equations
    Zhen-Hui Bu
    Zhi-Cheng Wang
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69
  • [5] Spectral Stability of Traveling Fronts for Reaction Diffusion-Degenerate Fisher-KPP Equations
    Leyva, J. Francisco
    Plaza, Ramon G.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) : 1311 - 1342
  • [6] Spectral Stability of Traveling Fronts for Reaction Diffusion-Degenerate Fisher-KPP Equations
    J. Francisco Leyva
    Ramón G. Plaza
    Journal of Dynamics and Differential Equations, 2020, 32 : 1311 - 1342
  • [7] Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities
    Wang, Zhi-Cheng
    Bu, Zhen-Hui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6405 - 6450
  • [8] EXPONENTIAL STABILITY OF THE TRAVELING FRONTS FOR A VISCOUS FISHER-KPP EQUATION
    Wang, Lina
    Bai, Xueli
    Cao, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (03): : 801 - 815
  • [9] Multidimensional transition fronts for Fisher-KPP reactions
    Alwan, Amir
    Han, Zonglin
    Lin, Jessica
    Tao, Zijian
    Zlatos, Andrej
    NONLINEARITY, 2019, 32 (03) : 927 - 941
  • [10] Traveling fronts for Fisher-KPP lattice equations in almost-periodic media
    Liang, Xing
    Wang, Hongze
    Zhou, Qi
    Zhou, Tao
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (05): : 1179 - 1237