Traveling fronts for Fisher-KPP lattice equations in almost-periodic media

被引:1
|
作者
Liang, Xing [1 ]
Wang, Hongze [2 ]
Zhou, Qi [3 ,4 ]
Zhou, Tao [5 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Chinese Univ Hong Kong, Sch Sci & Engn, Shenzhen 518172, Peoples R China
[3] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[4] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
[5] Anhui Univ, Ctr Pure Math, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
基金
国家重点研发计划;
关键词
Fisher-KPP equation; traveling front; Schr & ouml; dinger operator; almost-periodicity; KAM theory; SPREADING SPEEDS; LYAPUNOV EXPONENT; HOLDER CONTINUITY; ROTATION NUMBER; WAVES; OPERATORS; TRANSITION; DIFFUSION; PROPAGATION; EXISTENCE;
D O I
10.4171/AIHPC/101
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the existence of almost-periodic traveling fronts for Fisher-KPP lattice equations in one-dimensional almost-periodic media. Using the Lyapunov exponent of the linearized operator near the unstable steady state, we give sufficient conditions for the existence of a minimal speed of traveling fronts. Furthermore, it is shown that almost-periodic traveling fronts share the same recurrence property as the structure of the media. As applications, we give some typical examples which have minimal speed, and the proof of this depends on a dynamical system approach to the almost-periodic Schr & ouml;dinger operator.
引用
收藏
页码:1179 / 1237
页数:59
相关论文
共 50 条
  • [1] Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations
    Nadin, Gregoire
    Rossi, Luca
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (03) : 1239 - 1267
  • [2] Generalized Transition Fronts for One-Dimensional Almost Periodic Fisher-KPP Equations
    Grégoire Nadin
    Luca Rossi
    Archive for Rational Mechanics and Analysis, 2017, 223 : 1239 - 1267
  • [3] TRANSITION FRONTS IN NONLOCAL FISHER-KPP EQUATIONS IN TIME HETEROGENEOUS MEDIA
    Shen, Wenxian
    Shen, Zhongwei
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) : 1193 - 1213
  • [4] EXPONENTIAL STABILITY OF THE TRAVELING FRONTS FOR A VISCOUS FISHER-KPP EQUATION
    Wang, Lina
    Bai, Xueli
    Cao, Yang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (03): : 801 - 815
  • [5] Spectral Stability of Traveling Fronts for Reaction Diffusion-Degenerate Fisher-KPP Equations
    Leyva, J. Francisco
    Plaza, Ramon G.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2020, 32 (03) : 1311 - 1342
  • [6] MULTIDIMENSIONAL STABILITY OF PYRAMIDAL TRAVELING FRONTS IN DEGENERATE FISHER-KPP MONOSTABLE AND COMBUSTION EQUATIONS
    Wu, Denghui
    Bu, Zhen-hui
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 3721 - 3740
  • [7] Spectral Stability of Traveling Fronts for Reaction Diffusion-Degenerate Fisher-KPP Equations
    J. Francisco Leyva
    Ramón G. Plaza
    Journal of Dynamics and Differential Equations, 2020, 32 : 1311 - 1342
  • [8] Wave fronts for a class of delayed Fisher-KPP equations
    Zhang, Jinrui
    Hu, Haijun
    Huang, Chuangxia
    APPLIED MATHEMATICS LETTERS, 2025, 163
  • [9] Propagation in Fisher-KPP type equations with fractional diffusion in periodic media
    Cabre, Xavier
    Coulon, Anne-Charline
    Roquejoffre, Jean-Michel
    COMPTES RENDUS MATHEMATIQUE, 2012, 350 (19-20) : 885 - 890
  • [10] Nonplanar traveling fronts in reaction-diffusion equations with combustion and degenerate Fisher-KPP nonlinearities
    Wang, Zhi-Cheng
    Bu, Zhen-Hui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (07) : 6405 - 6450