MULTIDIMENSIONAL STABILITY OF PYRAMIDAL TRAVELING FRONTS IN DEGENERATE FISHER-KPP MONOSTABLE AND COMBUSTION EQUATIONS

被引:0
|
作者
Wu, Denghui [1 ]
Bu, Zhen-hui [1 ]
机构
[1] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2021年 / 29卷 / 06期
关键词
pyramidal traveling front; multidimen-sional stability; degenerate Fisher-KPP monostable nonlinearity; combustion nonlinearity; Reaction-diffusion equation; REACTION-DIFFUSION EQUATIONS; GLOBAL STABILITY; WAVES; EXISTENCE; DECAY;
D O I
10.3934/era.2021058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, multidimensional stability of pyramidal traveling fronts are studied to the reaction-diffusion equations with degenerate FisherKPP monostable and combustion nonlinearities. By constructing sup ersolutions and subsolutions coupled with the comparison principle, we firstly prove that under any initial perturbation (possibly large) decaying at space infinity, the three-dimensional pyramidal traveling fronts are asymptotically stable in weighted L-infinity spaces on R-n (n >= 4). Secondly, we show that under general bounded perturbations (even very small), the pyramidal traveling fronts are not asymptotically stable by constructing a solution which oscillates permanently between two three-dimensional pyramidal traveling fronts on R-4.
引用
收藏
页码:3721 / 3740
页数:20
相关论文
共 50 条
  • [41] Travelling Fronts and Entire Solutions¶of the Fisher-KPP Equation in ℝN
    François Hamel
    Nikolaï Nadirashvili
    Archive for Rational Mechanics and Analysis, 2001, 157 : 91 - 163
  • [42] A new approach to computing the asymptotics of the position of Fisher-KPP fronts
    Berestycki, Julien
    Brunet, Eric
    Derrida, Bernard
    EPL, 2018, 122 (01)
  • [43] The Influence of Fractional Diffusion in Fisher-KPP Equations
    Xavier Cabré
    Jean-Michel Roquejoffre
    Communications in Mathematical Physics, 2013, 320 : 679 - 722
  • [44] Existence and Non-Existence of Fisher-KPP Transition Fronts
    James Nolen
    Jean-Michel Roquejoffre
    Lenya Ryzhik
    Andrej Zlatoš
    Archive for Rational Mechanics and Analysis, 2012, 203 : 217 - 246
  • [45] Travelling fronts and entire solutions of the Fisher-KPP equation in RN
    Hamel, F
    Nadirashvili, N
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 157 (02) : 91 - 163
  • [46] Existence and Non-Existence of Fisher-KPP Transition Fronts
    Nolen, James
    Roquejoffre, Jean-Michel
    Ryzhik, Lenya
    Zlatos, Andrej
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (01) : 217 - 246
  • [47] Refined long-time asymptotics for Fisher-KPP fronts
    Nolen, James
    Roquejoffre, Jean-Michel
    Ryzhik, Lenya
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
  • [48] Convergence to a propagating front in a degenerate Fisher-KPP equation with advection
    Alfaro, Matthieu
    Logak, Elisabeth
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 387 (01) : 251 - 266
  • [49] EXISTENCE AND ASYMPTOTIC STABILITY OF TRAVELING FRONTS FOR NONLOCAL MONOSTABLE EVOLUTION EQUATIONS
    Cheng, Hongmei
    Yuan, Rong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (07): : 3007 - 3022
  • [50] Shooting argument approach to a sharp-type solution for nonlinear degenerate Fisher-KPP equations
    Sanchez-Garduno, Faustino
    Maini, Philip K.
    Kappos, M.E.
    IMA Journal of Applied Mathematics (Institute of Mathematics and Its Applications), 1996, 57 (03): : 211 - 221