Decentralized Offloading Strategies Based on Reinforcement Learning for Multi-Access Edge Computing

被引:3
|
作者
Hu, Chunyang [1 ,2 ]
Li, Jingchen [3 ]
Shi, Haobin [3 ]
Ning, Bin [2 ]
Gu, Qiong [2 ]
机构
[1] Hubei Univ Arts & Sci, Hubei Key Lab Power Syst Design & Test Elect Vehi, Xiangyang 441053, Peoples R China
[2] Hubei Univ Arts & Sci, Sch Comp Engn, Xiangyang 441053, Peoples R China
[3] Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian 710129, Peoples R China
关键词
multi-access edge computing; deep reinforcement learning; task offloading; RESOURCE-ALLOCATION;
D O I
10.3390/info12090343
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using reinforcement learning technologies to learn offloading strategies for multi-access edge computing systems has been developed by researchers. However, large-scale systems are unsuitable for reinforcement learning, due to their huge state spaces and offloading behaviors. For this reason, this work introduces the centralized training and decentralized execution mechanism, designing a decentralized reinforcement learning model for multi-access edge computing systems. Considering a cloud server and several edge servers, we separate the training and execution in the reinforcement learning model. The execution happens in edge devices of the system, and edge servers need no communication. Conversely, the training process occurs at the cloud device, which causes a lower transmission latency. The developed method uses a deep deterministic policy gradient algorithm to optimize offloading strategies. The simulated experiment shows that our method can learn the offloading strategy for each edge device efficiently.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] A Survey on Task Offloading in Multi-access Edge Computing
    Islam, Akhirul
    Debnath, Arindam
    Ghose, Manojit
    Chakraborty, Suchetana
    JOURNAL OF SYSTEMS ARCHITECTURE, 2021, 118
  • [22] The Advantage of Computation Offloading in Multi-Access Edge Computing
    Singh, Raghubir
    Armour, Simon
    Khan, Aftab
    Sooriyabandara, Mahesh
    Oikonomou, George
    2019 FOURTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2019, : 289 - 294
  • [23] Multi-objective deep reinforcement learning for computation offloading in UAV-assisted multi-access edge computing ✩
    Liu, Xu
    Chai, Zheng-Yi
    Li, Ya-Lun
    Cheng, Yan-Yang
    Zeng, Yue
    INFORMATION SCIENCES, 2023, 642
  • [24] Online Learning in Matching Games for Task Offloading in Multi-Access Edge Computing
    Simon, Bernd
    Mehler, Helena
    Klein, Anja
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 3270 - 3276
  • [25] An Online Learning Algorithm for Distributed Task Offloading in Multi-Access Edge Computing
    Sun, Zhenfeng
    Nakhai, Mohammad Reza
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 3090 - 3102
  • [26] Computation Offloading in Multi-Access Edge Computing: A Multi-Task Learning Approach
    Yang, Bo
    Cao, Xuelin
    Bassey, Joshua
    Li, Xiangfang
    Qian, Lijun
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2021, 20 (09) : 2745 - 2762
  • [27] Reinforcement Learning for Real-Time Multi-Access Edge Computing
    Rajashekar, Kolichala
    PROCEEDINGS OF THE 24TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND NETWORKING, ICDCN 2023, 2023, : 296 - 297
  • [28] Learning-based Privacy-Preserving Computation Offloading in Multi-Access Edge Computing
    You, Feiran
    Yuan, Xin
    Ni, Wei
    Jamalipour, Abbas
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 922 - 927
  • [29] Deep reinforcement learning-based resource allocation in multi-access edge computing
    Khani, Mohsen
    Sadr, Mohammad Mohsen
    Jamali, Shahram
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023,
  • [30] A Deep Reinforcement Learning-Based Offloading Scheme for Multi-Access Edge Computing-Supported eXtended Reality Systems
    Trinh, Bao
    Muntean, Gabriel-Miro
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 1254 - 1264