Complex spectrally arbitrary zero-nonzero patterns

被引:6
|
作者
McDonald, J. J. [1 ]
Yielding, A. A. [2 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Eastern Oregon Univ, Dept Math, La Grande, OR 97850 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2012年 / 60卷 / 01期
关键词
spectrally arbitrary; zero-nonzero patterns; complex matrices; SIGN PATTERNS; MATRICES; ORDER-4;
D O I
10.1080/03081087.2010.512730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we highlight interesting properties of complex spectrally arbitrary zero-nonzero patterns. In particular, we investigate irreducible complex spectrally arbitrary zero-nonzero patterns for which all Jacobians are zero at every nilpotent realization. We also study complex spectrally arbitrary patterns whose corresponding directed graph does not contain a two-cycle. Lastly, we provide a complete list of all 3 x 3 and 4 x 4 complex spectrally arbitrary zero-nonzero patterns.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 50 条
  • [31] Spectrally and inertially arbitrary sign patterns
    Cavers, MS
    Vander Meulen, KN
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 394 : 53 - 72
  • [32] Inertially arbitrary nonzero patterns of order 4
    Cavers, Michael S.
    Vander Meulen, Kevin N.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 30 - 43
  • [33] Algebraic conditions and the sparsity of spectrally arbitrary patterns
    Deaett, Louis
    Garnett, Colin
    SPECIAL MATRICES, 2021, 9 (01): : 257 - 274
  • [34] A class of minimally spectrally arbitrary sign patterns
    Li, Xi
    Shao, Yanling
    Gao, Yubin
    ARS COMBINATORIA, 2012, 103 : 311 - 319
  • [35] A new family of spectrally arbitrary ray patterns
    Yinzhen Mei
    Yubin Gao
    Yanling Shao
    Peng Wang
    Czechoslovak Mathematical Journal, 2016, 66 : 1049 - 1058
  • [36] Nilpotent matrices and spectrally arbitrary sign patterns
    Pereira, Rajesh
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2007, 16 : 232 - 236
  • [37] New classes of spectrally arbitrary ray patterns
    Gao, Yubin
    Shao, Yanling
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (10) : 2140 - 2148
  • [38] A new family of spectrally arbitrary ray patterns
    Mei, Yinzhen
    Gao, Yubin
    Shao, Yanling
    Wang, Peng
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2016, 66 (04) : 1049 - 1058
  • [39] Spectrally arbitrary patterns over finite fields
    Bodine, E. J.
    McDonald, J. J.
    LINEAR & MULTILINEAR ALGEBRA, 2012, 60 (03): : 285 - 299
  • [40] Spectrally arbitrary patterns over rings with unity
    Glassett, Jillian L.
    McDonald, Judith J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 576 : 228 - 245