Complex spectrally arbitrary zero-nonzero patterns

被引:6
|
作者
McDonald, J. J. [1 ]
Yielding, A. A. [2 ]
机构
[1] Washington State Univ, Dept Math, Pullman, WA 99164 USA
[2] Eastern Oregon Univ, Dept Math, La Grande, OR 97850 USA
来源
LINEAR & MULTILINEAR ALGEBRA | 2012年 / 60卷 / 01期
关键词
spectrally arbitrary; zero-nonzero patterns; complex matrices; SIGN PATTERNS; MATRICES; ORDER-4;
D O I
10.1080/03081087.2010.512730
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we highlight interesting properties of complex spectrally arbitrary zero-nonzero patterns. In particular, we investigate irreducible complex spectrally arbitrary zero-nonzero patterns for which all Jacobians are zero at every nilpotent realization. We also study complex spectrally arbitrary patterns whose corresponding directed graph does not contain a two-cycle. Lastly, we provide a complete list of all 3 x 3 and 4 x 4 complex spectrally arbitrary zero-nonzero patterns.
引用
收藏
页码:11 / 26
页数:16
相关论文
共 50 条
  • [21] Spectrally arbitrary ray patterns
    McDonald, Judith J.
    Stuart, Jeffrey
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 429 (04) : 727 - 734
  • [22] A CLASS OF SPECTRALLY ARBITRARY RAY PATTERNS
    Jiangwu Deng
    AnnalsofAppliedMathematics, 2017, 33 (03) : 254 - 265
  • [23] Minimal spectrally arbitrary sign patterns
    Britz, T
    McDonald, JJ
    Olesky, DD
    van den Driessche, P
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2004, 26 (01) : 257 - 271
  • [24] On determining minimal spectrally arbitrary patterns
    Cavers, MS
    Kim, IJ
    Shader, BL
    Vander Meulen, KN
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 13 : 240 - 248
  • [25] A NOTE ON SPECTRALLY ARBITRARY SIGN PATTERNS
    Gao, Yubin
    Li, Zhongshan
    Shao, Yanling
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2008, 11 (01): : 15 - 35
  • [26] Bordering for spectrally arbitrary sign patterns
    Olesky, D. D.
    van den Driessche, P.
    Meulen, K. N. Vander
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2017, 534 : 36 - 50
  • [27] Several spectrally arbitrary ray patterns
    Zhang, Ling
    Huang, Ting-Zhu
    Li, Zhongshan
    Zhang, Jing-Yue
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (04): : 543 - 564
  • [28] On determining spectrally arbitrary sign patterns
    Shao, Yanling
    Gao, Yubin
    Advances in Matrix Theory and Applications, 2006, : 97 - 100
  • [29] Spectrally arbitrary star sign patterns
    MacGillivray, G
    Tifenbach, RM
    van den Driessche, P
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 400 : 99 - 119
  • [30] A Minimal Spectrally Arbitrary Pattern with 2n Nonzero Entries
    Li, Zhihua
    Gao, Yubin
    ADVANCES IN MATRIX THEORY AND ITS APPLICATIONS, VOL 1: PROCEEDINGS OF THE EIGHTH INTERNATIONAL CONFERENCE ON MATRIX THEORY AND ITS APPLICATIONS, 2008, : 143 - 146