A convenient criterion under which Z2-graded operators are Hamiltonian

被引:1
|
作者
Hussin, Veronique [1 ]
Kiselev, Arthemy V. [2 ,3 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Univ Groningen, J Bernoulli Inst Math & Comp Sci, NL-9700 AK Gtoningen, Netherlands
[3] IHES, F-91440 Bures Sur Yvette, France
关键词
ALGEBRAS;
D O I
10.1088/1742-6596/284/1/012035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a simple and convenient criterion under which skew-adjoint Z(2)-graded total differential operators are Hamiltonian, provided that their images are closed under commutation in the Lie algebras of evolutionary vector fields on the infinite jet spaces for vector bundles over smooth manifolds.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Z2-graded tensor products of p.i. algebras
    Regev, A
    Seeman, T
    JOURNAL OF ALGEBRA, 2005, 291 (01) : 274 - 296
  • [42] Z2-GRADED POISSON ALGEBRAS, THEIR DEFORMATIONS AND COHOMOLOGY IN LOW DIMENSIONS
    Penkava, M.
    Pichereau, A.
    TRANSFORMATION GROUPS, 2018, 23 (04) : 1091 - 1127
  • [43] K-THEORY FOR Z2-GRADED BANACH-ALGEBRAS
    VANDAELE, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 304 (10): : 267 - 270
  • [44] Some algebraic features of Z2-graded KK-theory
    Haag, U
    K-THEORY, 1998, 13 (01): : 81 - 108
  • [45] PROPERTIES OF 2X2 QUANTUM MATRICES IN Z2-GRADED SPACES
    SCHWENK, J
    SCHMIDKE, WB
    VOKOS, SP
    ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1990, 46 (04): : 643 - 646
  • [46] Z2 x Z2-graded Lie symmetries of the Levy-Leblond equations
    Aizawa, N.
    Kuznetsova, Z.
    Tanaka, H.
    Toppan, F.
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (12):
  • [47] Classification of minimal Z2 x Z2-graded Lie (super)algebras and some applications
    Kuznetsova, Zhanna
    Toppan, Francesco
    JOURNAL OF MATHEMATICAL PHYSICS, 2021, 62 (06)
  • [48] On quantization of Z2-graded algebras (vol 38, pg 476, 1997)
    Mudrov, AI
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (11) : 6242 - 6242
  • [49] NOVIKOV Z2-GRADED ALGEBRAS WITHAN ASSOCIATIVE 0-COMPONENT
    Panasenko, A. S.
    Zhelyabin, V. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2024, 65 (02) : 426 - 440
  • [50] Convenient Closure Operators on Z2
    Slapal, Josef
    COMBINATORIAL IMAGE ANALYSIS, PROCEEDINGS, 2009, 5852 : 425 - 436