A convenient criterion under which Z2-graded operators are Hamiltonian

被引:1
|
作者
Hussin, Veronique [1 ]
Kiselev, Arthemy V. [2 ,3 ]
机构
[1] Univ Montreal, Dept Math & Stat, CP 6128,Succ Ctr Ville, Montreal, PQ H3C 3J7, Canada
[2] Univ Groningen, J Bernoulli Inst Math & Comp Sci, NL-9700 AK Gtoningen, Netherlands
[3] IHES, F-91440 Bures Sur Yvette, France
关键词
ALGEBRAS;
D O I
10.1088/1742-6596/284/1/012035
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We formulate a simple and convenient criterion under which skew-adjoint Z(2)-graded total differential operators are Hamiltonian, provided that their images are closed under commutation in the Lie algebras of evolutionary vector fields on the infinite jet spaces for vector bundles over smooth manifolds.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Z2-GRADED ALGEBRAS
    KAPLANSKY, I
    ILLINOIS JOURNAL OF MATHEMATICS, 1991, 35 (01) : 85 - 92
  • [2] SUPERIMPLECTIC OPERATORS AND Z2-GRADED INTEGRABLE EVOLUTION-EQUATIONS
    TROSTEL, R
    PROGRESS OF THEORETICAL PHYSICS, 1987, 77 (02): : 462 - 472
  • [3] VARIETIES AND Z2-GRADED ALGEBRAS
    KEMER, AR
    MATHEMATICS OF THE USSR-IZVESTIYA, 1984, 48 (05): : 359 - 374
  • [4] Z2-graded number theory
    Hadas, Ofer
    Henke, Anne
    Regev, Amitai
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (08) : 3077 - 3095
  • [5] On quantization of Z2-graded algebras
    Mudrov, A. I.
    Journal of Mathematical Physics, 38 (01):
  • [6] Z2-graded cocycles in higher dimensions
    Ekstrand, C
    LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (04) : 359 - 378
  • [7] Z2-graded codimensions of unital algebras
    Repovs, Dusan D.
    Zaicev, Mikhail V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (03) : 483 - 500
  • [8] Z2-Graded Cocycles in Higher Dimensions
    C. Ekstrand
    Letters in Mathematical Physics, 1998, 43 : 359 - 378
  • [9] Z2 x Z2-graded mechanics: The quantization
    Aizawa, N.
    Kuznetsova, Z.
    Toppan, F.
    NUCLEAR PHYSICS B, 2021, 967
  • [10] On C*-norms on Z2-graded tensor products
    Crismale, Vitonofrio
    Rossi, Stefano
    Zurlo, Paola
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (01)