Robust model-based analysis of single-particle tracking experiments with Spot-On

被引:0
|
作者
Hansen, Anders S. [1 ,2 ]
Woringer, Maxime [1 ,3 ,4 ]
Grimm, Jonathan B. [5 ]
Lavis, Luke D. [5 ]
Tjian, Robert [1 ,2 ]
Darzacq, Xavier [1 ]
机构
[1] Univ Calif Berkeley, CIRM Ctr Excellence, Li Ka Shing Ctr Biomed & Hlth Sci, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Inst Pasteur, Unite Imagerie & Modelisat, Paris, France
[4] UPMC Univ Paris 06, Sorbonne Univ, Paris, France
[5] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VI USA
来源
ELIFE | 2018年 / 7卷
基金
美国国家卫生研究院;
关键词
LIVE-CELL; LOCALIZATION MICROSCOPY; MOLECULE TRACKING; FACTOR DYNAMICS; FLUOROPHORES; DIFFUSION; KINETICS; REVEALS; NUCLEUS; BINDING;
D O I
10.7554/eLife.33125.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Robust model-based tracking control using parametric programming
    Sakizlis, V
    Dua, V
    Perkins, JD
    Pistikopoulos, EN
    COMPUTERS & CHEMICAL ENGINEERING, 2004, 28 (1-2) : 195 - 207
  • [42] Adaptive Edge Detection for Robust Model-Based Camera Tracking
    Park, Hanhoon
    Mitsumine, Hideki
    Fujii, Mahito
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2011, 57 (04) : 1465 - 1470
  • [43] SINGLE-PARTICLE TRACKING - ANALYSIS OF DIFFUSION AND FLOW IN 2-DIMENSIONAL SYSTEMS
    Qian, H
    SHEETZ, MP
    ELSON, EL
    BIOPHYSICAL JOURNAL, 1991, 60 (04) : 910 - 921
  • [44] A Reconstruction Algorithm for Single-Particle Diffraction Imaging Experiments
    Loh, Duane Ne-Te
    Elser, Veit
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2009, 65 : S73 - S73
  • [45] Reconstruction algorithm for single-particle diffraction imaging experiments
    Loh, Ne-Te Duane
    Elser, Veit
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [46] Optimal diffusion coefficient estimation in single-particle tracking
    Michalet, Xavier
    Berglund, Andrew J.
    PHYSICAL REVIEW E, 2012, 85 (06):
  • [47] Performance bounds on single-particle tracking by fluorescence modulation
    A.J. Berglund
    H. Mabuchi
    Applied Physics B, 2006, 83 : 127 - 133
  • [48] Diblock copolymer membranes investigated by single-particle tracking
    Haramagatti, Chandrashekara R.
    Schacher, Felix H.
    Mueller, Axel H. E.
    Koehler, Juergen
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (06) : 2278 - 2284
  • [49] Single-particle tracking: Brownian dynamics of viscoelastic materials
    Qian, H
    BIOPHYSICAL JOURNAL, 2000, 79 (01) : 137 - 143
  • [50] TrackMate: An open and extensible platform for single-particle tracking
    Tinevez, Jean-Yves
    Perry, Nick
    Schindelin, Johannes
    Hoopes, Genevieve M.
    Reynolds, Gregory D.
    Laplantine, Emmanuel
    Bednarek, Sebastian Y.
    Shorte, Spencer L.
    Eliceiri, Kevin W.
    METHODS, 2017, 115 : 80 - 90