Robust model-based analysis of single-particle tracking experiments with Spot-On

被引:0
|
作者
Hansen, Anders S. [1 ,2 ]
Woringer, Maxime [1 ,3 ,4 ]
Grimm, Jonathan B. [5 ]
Lavis, Luke D. [5 ]
Tjian, Robert [1 ,2 ]
Darzacq, Xavier [1 ]
机构
[1] Univ Calif Berkeley, CIRM Ctr Excellence, Li Ka Shing Ctr Biomed & Hlth Sci, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Howard Hughes Med Inst, Berkeley, CA 94720 USA
[3] Inst Pasteur, Unite Imagerie & Modelisat, Paris, France
[4] UPMC Univ Paris 06, Sorbonne Univ, Paris, France
[5] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VI USA
来源
ELIFE | 2018年 / 7卷
基金
美国国家卫生研究院;
关键词
LIVE-CELL; LOCALIZATION MICROSCOPY; MOLECULE TRACKING; FACTOR DYNAMICS; FLUOROPHORES; DIFFUSION; KINETICS; REVEALS; NUCLEUS; BINDING;
D O I
10.7554/eLife.33125.001
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-particle tracking (SPT) has become an important method to bridge biochemistry and cell biology since it allows direct observation of protein binding and diffusion dynamics in live cells. However, accurately inferring information from SPT studies is challenging due to biases in both data analysis and experimental design. To address analysis bias, we introduce 'Spot-On', an intuitive web-interface. Spot-On implements a kinetic modeling framework that accounts for known biases, including molecules moving out-of-focus, and robustly infers diffusion constants and subpopulations from pooled single-molecule trajectories. To minimize inherent experimental biases, we implement and validate stroboscopic photo-activation SPT (spaSPT), which minimizes motion-blur bias and tracking errors. We validate Spot-On using experimentally realistic simulations and show that Spot-On outperforms other methods. We then apply Spot-On to spaSPT data from live mammalian cells spanning a wide range of nuclear dynamics and demonstrate that Spot-On consistently and robustly infers subpopulation fractions and diffusion constants.
引用
收藏
页数:33
相关论文
共 50 条
  • [21] Robust single-particle tracking in live-cell time-lapse sequences
    Khuloud Jaqaman
    Dinah Loerke
    Marcel Mettlen
    Hirotaka Kuwata
    Sergio Grinstein
    Sandra L Schmid
    Gaudenz Danuser
    Nature Methods, 2008, 5 : 695 - 702
  • [22] Robust single-particle tracking in live-cell time-lapse sequences
    Jaqaman, Khuloud
    Loerke, Dinah
    Mettlen, Marcel
    Kuwata, Hirotaka
    Grinstein, Sergio
    Schmid, Sandra L.
    Danuser, Gaudenz
    NATURE METHODS, 2008, 5 (08) : 695 - 702
  • [23] A Framework for Model-Based Tracking Experiments in Image Sequences
    Hendrik Dahlkamp
    Hans-Hellmut Nagel
    Artur Ottlik
    Paul Reuter
    International Journal of Computer Vision, 2007, 73 : 139 - 157
  • [24] A framework for model-based tracking experiments in image sequences
    Dahlkamp, Hendrik
    Nagel, Hans-Hellmut
    Ottlik, Artur
    Reuter, Paul
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 73 (02) : 139 - 157
  • [25] Robust pedestrian tracking using a model-based approach
    Masoud, D
    Papanikolopoulos, NP
    IEEE CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS, 1997, : 338 - 343
  • [26] Uses of single-particle tracking in living cells
    Zhou, Xuan
    Wang, Lei
    DRUG DISCOVERIES AND THERAPEUTICS, 2010, 4 (02): : 62 - 69
  • [27] Simultaneous Single-Particle Superlocalization and Rotational Tracking
    Gu, Yan
    Wang, Gufeng
    Fang, Ning
    ACS NANO, 2013, 7 (02) : 1658 - 1665
  • [28] Single-particle tracking of lipoproteins and lipid vesicles
    de Messieres, Michel
    Ng, Abby
    Melson, Valerie
    Duarte, Cornelio
    Remaley, Alan
    Lee, Jennifer
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [29] Single-particle colloid tracking in four dimensions
    Anthony, Stephen M.
    Hong, Liang
    Kim, Minsu
    Granick, Steve
    LANGMUIR, 2006, 22 (24) : 9812 - 9815
  • [30] Single-Particle Tracking Analysis using the Radius of Gyration Tensor, Revisited
    Saxton, Michael J.
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 487A - 487A