Bipolar transport in organic field-effect transistors:: Organic semiconductor blends versus contact modification

被引:16
|
作者
Opitz, Andreas [1 ]
Kraus, Michael [1 ]
Bronner, Markus [1 ]
Wagner, Julia [1 ]
Bruetting, Wolfgang [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
NEW JOURNAL OF PHYSICS | 2008年 / 10卷
关键词
D O I
10.1088/1367-2630/10/6/065006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The achievement of bipolar transport is an important feature of organic semiconductors, both for a fundamental understanding of transport properties and for applications such as complementary electronic devices. We have investigated two routes towards organic field-effect transistors exhibiting bipolar transport characteristics. As a first step, ambipolar field-effect transistors are realized by mixtures of p-conducting copper-phthalocyanine (CuPc) and n-conducting buckminsterfullerene (C-60). As a second step, bipolar transport in copper-phthalocyanine is achieved by a modification of the gate dielectric in combination with a controlled variation of the electrode materials used for carrier injection. The analysis involves the determination of charge-carrier mobilities and contact resistances by a single curve analysis and by the transfer length method. Comparison of both types of samples indicates that percolation is a crucial feature in mixtures of both materials to achieve ambipolar carrier flow, whereas in neat films of one single material suitable contact modification allows for bipolar charge-carrier transport. In the latter case, the obtained electron and hole mobilities differ by less than one order of magnitude.
引用
收藏
页数:12
相关论文
共 50 条
  • [42] Engineering of the dielectric-semiconductor interface in organic field-effect transistors
    Sun, Xiangnan
    Di, Chong-an
    Liu, Yunqi
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (13) : 2599 - 2611
  • [43] Highly Oriented Liquid Crystal Semiconductor for Organic Field-Effect Transistors
    Han, Moon Jong
    Wei, Dayan
    Kim, Yun Ho
    Ahn, Hyungju
    Shin, Tae Joo
    Clark, Noel A.
    Walba, David M.
    Yoon, Dong Ki
    ACS CENTRAL SCIENCE, 2018, 4 (11) : 1495 - 1502
  • [44] Polyethylene and Semiconducting Polymer Blends for the Fabrication of Organic Field-Effect Transistors: Balancing Charge Transport and Stretchability
    Kulatunga, Piumi
    Yousefi, Nastaran
    Rondeau-Gagne, Simon
    CHEMOSENSORS, 2022, 10 (06)
  • [45] Monolayer organic field-effect transistors
    Liu, Jie
    Jiang, Lang
    Hu, Wenping
    Liu, Yunqi
    Zhu, Daoben
    SCIENCE CHINA-CHEMISTRY, 2019, 62 (03) : 313 - 330
  • [46] Monolayer organic field-effect transistors
    Jie Liu
    Lang Jiang
    Wenping Hu
    Yunqi Liu
    Daoben Zhu
    Science China Chemistry, 2019, 62 : 313 - 330
  • [47] Trapping in organic field-effect transistors
    Schön, JH
    Batlogg, B
    JOURNAL OF APPLIED PHYSICS, 2001, 89 (01) : 336 - 342
  • [48] Photostability of Organic Field-Effect Transistors
    Li, Ning
    Lei, Yanlian
    Lau, Ying Suet
    Sui, Xiubao
    Zhu, Furong
    ACS APPLIED NANO MATERIALS, 2023, 6 (14) : 12704 - 12710
  • [49] On the degradation of organic field-effect transistors
    Pannemann, C
    Diekmann, T
    Hilleringmann, U
    16TH INTERNATIONAL CONFERENCE ON MICROELECTRONICS, PROCEEDINGS, 2004, : 76 - 79
  • [50] Functional Organic Field-Effect Transistors
    Guo, Yunlong
    Yu, Gui
    Liu, Yunqi
    ADVANCED MATERIALS, 2010, 22 (40) : 4427 - 4447