Bipolar transport in organic field-effect transistors:: Organic semiconductor blends versus contact modification

被引:16
|
作者
Opitz, Andreas [1 ]
Kraus, Michael [1 ]
Bronner, Markus [1 ]
Wagner, Julia [1 ]
Bruetting, Wolfgang [1 ]
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
来源
NEW JOURNAL OF PHYSICS | 2008年 / 10卷
关键词
D O I
10.1088/1367-2630/10/6/065006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The achievement of bipolar transport is an important feature of organic semiconductors, both for a fundamental understanding of transport properties and for applications such as complementary electronic devices. We have investigated two routes towards organic field-effect transistors exhibiting bipolar transport characteristics. As a first step, ambipolar field-effect transistors are realized by mixtures of p-conducting copper-phthalocyanine (CuPc) and n-conducting buckminsterfullerene (C-60). As a second step, bipolar transport in copper-phthalocyanine is achieved by a modification of the gate dielectric in combination with a controlled variation of the electrode materials used for carrier injection. The analysis involves the determination of charge-carrier mobilities and contact resistances by a single curve analysis and by the transfer length method. Comparison of both types of samples indicates that percolation is a crucial feature in mixtures of both materials to achieve ambipolar carrier flow, whereas in neat films of one single material suitable contact modification allows for bipolar charge-carrier transport. In the latter case, the obtained electron and hole mobilities differ by less than one order of magnitude.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Organic Semiconductor-Insulator Blends for Organic Field-Effect Transistors
    Zhang, Zhuoqiong
    Shi, Run
    Amini, Abbas
    So, Shu Kong
    Cheng, Chun
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2022, 16 (05):
  • [2] Organic field-effect bipolar transistors
    Dodabalapur, A
    Katz, HE
    Torsi, L
    Haddon, RC
    APPLIED PHYSICS LETTERS, 1996, 68 (08) : 1108 - 1110
  • [3] Organic Semiconductor/Insulator Blends for Elastic Field-Effect Transistors and Sensors
    Janasz, Lukasz
    Borkowski, Michal
    Blom, Paul W. M.
    Marszalek, Tomasz
    Pisula, Wojciech
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (07)
  • [4] Unipolar and Bipolar Organic Field-Effect Transistors
    Dodabalapur, Ananth
    PROCEEDINGS OF THE 2008 BIPOLAR/BICMOS CIRCUITS AND TECHNOLOGY MEETING, 2008, : 167 - 170
  • [5] Organic semiconductor based field-effect transistors
    Weis, M.
    2014 10TH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES & MICROSYSTEMS (ASDAM), 2014, : 13 - 19
  • [6] Contact engineering in organic field-effect transistors
    Liu, Chuan
    Xu, Yong
    Noh, Yong-Young
    MATERIALS TODAY, 2015, 18 (02) : 79 - 96
  • [7] Effect of contact resistance in organic field-effect transistors
    Shi, Yanjun
    Liu, Jie
    Hu, Yuanyuan
    Hu, Wenping
    Jiang, Lang
    NANO SELECT, 2021, 2 (09): : 1661 - 1681
  • [8] Charge transport in organic field-effect transistors
    Chen, Xu
    Guo, Jianhang
    Peng, Lichao
    Wang, Qijing
    Jiang, Sai
    Li, Yun
    MATERIALS TODAY ELECTRONICS, 2023, 6
  • [9] Organic Semiconductor/Polymer Blend Films for Organic Field-Effect Transistors
    Riera-Galindo, Sergi
    Leonardi, Francesca
    Pfattner, Raphael
    Mas-Torrent, Marta
    ADVANCED MATERIALS TECHNOLOGIES, 2019, 4 (09)
  • [10] Hybrid graphene/organic semiconductor field-effect transistors
    Ha, Tae-Jun
    Akinwande, Deji
    Dodabalapur, Ananth
    APPLIED PHYSICS LETTERS, 2012, 101 (03)