Analysis of the computational singular perturbation reduction method for chemical kinetics

被引:113
|
作者
Zagaris, A
Kaper, HG
Kaper, TJ
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
[2] Boston Univ, Ctr Biodynam, Boston, MA 02215 USA
[3] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
chemical kinetics; kinetic equations; dimension reduction; slow manifold; multiple time scales; computational singular perturbation method; CSP method; control theory; Michaelis-Menten-Henri equations;
D O I
10.1007/s00332-003-0582-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the asymptotic accuracy of the Computational Singular Perturbation (CSP) method developed by Lam and Goussis [The CSP method for simplifying kinetics, Int. J. Chem. Kin. 26 (1994) 461-486] to reduce the dimensionality of a system of chemical kinetics equations. The method, which is generally applicable to multiple-time scale problems arising in a broad array of scientific disciplines, exploits the presence of disparate time scales to model the dynamics by an evolution equation on a lower-dimensional slow manifold. In this article it is shown that the successive applications of the CSP algorithm generate, order by order, the asymptotic expansion of a slow manifold. The results are illustrated on the Michaelis-Menten-Henri equations of enzyme kinetics.
引用
收藏
页码:59 / 91
页数:33
相关论文
共 50 条
  • [41] Asymptotic analysis of detonation development at SI engine conditions using computational singular perturbation
    Dimitrova, Iliana D.
    Luong, Minh-Bau
    Sanal, Sangeeth
    Efstathios-Al Tingas
    Im, Hong G.
    COMBUSTION THEORY AND MODELLING, 2024, 28 (03) : 282 - 316
  • [42] A NONASYMPTOTIC METHOD FOR SINGULAR PERTURBATION PROBLEMS
    KADALBAJOO, MK
    REDDY, YN
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 55 (01) : 73 - 84
  • [43] Model reduction: When singular perturbation analysis simplifies to partial equilibrium approximation
    Goussis, Dimitris A.
    COMBUSTION AND FLAME, 2015, 162 (04) : 1009 - 1018
  • [44] An exponential method for a singular perturbation problem
    Salama, AA
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 72 (03) : 305 - 312
  • [45] Analysis of Droplet Evaporation Dynamics Using Computational Singular Perturbation and Tangential Stretching Rate
    Angelilli, Lorenzo
    Malpica Galassi, Riccardo
    Ciottoli, Pietro Paolo
    Hernandez-Perez, Francisco E.
    Valorani, Mauro
    Im, Hong G.
    FLOW TURBULENCE AND COMBUSTION, 2025, 114 (01) : 275 - 298
  • [46] The renormalization method for singular perturbation of solitons
    Liu, Cheng-shi
    CHAOS SOLITONS & FRACTALS, 2022, 158
  • [47] The renormalization method for singular perturbation of solitons
    Liu, Cheng-shi
    Chaos, Solitons and Fractals, 2022, 158
  • [48] Asymptotic Analysis and a Uniformly Convergent Numerical Method for Singular Perturbation Problems
    Liu, Anning
    Huang, Zhongyi
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (04) : 755 - 787
  • [49] High order multiplication perturbation method for singular perturbation problems
    Zhang, Wen-zhi
    Huang, Pei-yan
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2013, 34 (11) : 1383 - 1392
  • [50] High order multiplication perturbation method for singular perturbation problems
    张文志
    黄培彦
    Applied Mathematics and Mechanics(English Edition), 2013, (11) : 1383 - 1392