Analysis of the computational singular perturbation reduction method for chemical kinetics

被引:113
|
作者
Zagaris, A
Kaper, HG
Kaper, TJ
机构
[1] Boston Univ, Dept Math, Boston, MA 02215 USA
[2] Boston Univ, Ctr Biodynam, Boston, MA 02215 USA
[3] Argonne Natl Lab, Div Math & Comp Sci, Argonne, IL 60439 USA
基金
美国国家科学基金会;
关键词
chemical kinetics; kinetic equations; dimension reduction; slow manifold; multiple time scales; computational singular perturbation method; CSP method; control theory; Michaelis-Menten-Henri equations;
D O I
10.1007/s00332-003-0582-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is concerned with the asymptotic accuracy of the Computational Singular Perturbation (CSP) method developed by Lam and Goussis [The CSP method for simplifying kinetics, Int. J. Chem. Kin. 26 (1994) 461-486] to reduce the dimensionality of a system of chemical kinetics equations. The method, which is generally applicable to multiple-time scale problems arising in a broad array of scientific disciplines, exploits the presence of disparate time scales to model the dynamics by an evolution equation on a lower-dimensional slow manifold. In this article it is shown that the successive applications of the CSP algorithm generate, order by order, the asymptotic expansion of a slow manifold. The results are illustrated on the Michaelis-Menten-Henri equations of enzyme kinetics.
引用
收藏
页码:59 / 91
页数:33
相关论文
共 50 条
  • [21] SINGULAR PERTURBATION REFINEMENT TO QUASI-STEADY STATE APPROXIMATION IN CHEMICAL KINETICS
    BOWEN, JR
    ACRIVOS, A
    OPPENHEIM, AK
    CHEMICAL ENGINEERING SCIENCE, 1963, 18 (03) : 177 - 188
  • [22] Computational singular perturbation analysis of super-knock in SI engines
    Jaasim, Mohammed
    Efstathios-Al Tingas
    Perez, Francisco E. Hernandez
    Im, Hong G.
    FUEL, 2018, 225 : 184 - 191
  • [23] A singular perturbation model order reduction method for a specially structured model
    Agili, SS
    Ansary, O
    Mossayebi, F
    JOURNAL OF VIBRATION AND CONTROL, 2004, 10 (02) : 309 - 316
  • [24] The System Order Reduction via Balancing in View of the Method of Singular Perturbation
    Skataric, Dobrila
    Kovacevic, Nada Ratkovic
    FME TRANSACTIONS, 2010, 38 (04): : 181 - 187
  • [25] Explicit time integration of the stiff chemical Langevin equations using computational singular perturbation
    Han, Xiaoying
    Valorani, Mauro
    Najm, Habib N.
    JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (19):
  • [26] 'Shooting method' for singular perturbation problems arising in chemical reactor theory
    Natesan, S
    Ramanujam, N
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 70 (02) : 251 - 262
  • [27] A "Booster method" for singular perturbation problems arising in chemical reactor theory
    Natesan, S
    Ramanujam, N
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 100 (01) : 27 - 48
  • [28] A reduction principle for singular perturbation problems
    Lee, KH
    Ong, EH
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 101 (01) : 45 - 62
  • [29] Singular perturbation analysis of system order reduction via system balancing
    Gajic, Z
    Lelic, M
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2420 - 2424
  • [30] Computational singular perturbation analysis of two-stage ignition of large hydrocarbons
    Kazakov, Andrei
    Chaos, Marcos
    Zhao, Zhenwei
    Dryer, Frederick L.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2006, 110 (21): : 7003 - 7009