On the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall

被引:8
|
作者
Wiesen, S. [1 ,47 ]
Brezinsek, S. [1 ,47 ]
Bonnin, X. [2 ]
Delabie, E. [3 ,81 ]
Frassinetti, L. [4 ,50 ]
Groth, M. [5 ,9 ]
Guillemaut, C. [6 ,16 ,61 ]
Harrison, J. [7 ,15 ]
Harting, D. [7 ,15 ]
Henderson, S. [7 ]
Huber, A. [1 ,47 ]
Kruezi, U. [2 ,15 ]
Pitts, R. A. [2 ]
Wischmeier, M. [8 ,70 ]
Abduallev, S. [47 ]
Abhangi, M. [54 ]
Abreu, P. [61 ]
Afzal, M. [15 ]
Aggarwal, K. M. [37 ]
Ahlgren, T. [109 ]
Ahn, J. H. [16 ]
Aho-Mantila, L. [119 ]
Aiba, N. [77 ]
Airila, M. [119 ]
Albanese, R. [112 ]
Aldred, V. [15 ]
Alegre, D. [101 ]
Alessi, E. [53 ]
Aleynikov, P. [63 ]
Alfier, A. [20 ]
Alkseev, A. [80 ]
Allinson, M. [15 ]
Alper, B. [15 ]
Alves, E. [61 ]
Ambrosino, G. [112 ]
Ambrosino, R. [113 ]
Amicucci, L. [98 ]
Amosov, V. [96 ]
Sunden, E. Andersson [30 ]
Angelone, M. [98 ]
Anghel, M. [93 ]
Angioni, C. [70 ]
Appel, L. [15 ]
Appelbee, C. [15 ]
Arena, P. [38 ]
Ariola, M. [113 ]
Arnichand, H. [16 ]
Arshad, S. [49 ]
Ash, A. [15 ]
Ashikawa, N. [76 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[2] ITER Org, Route Vinon Sur Verdon,CS90 046, F-13067 St Paul Les Durance, France
[3] Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
[4] KTH, Assoc VR, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[5] Aalto Univ, Espoo, Finland
[6] Univ Lisbon, Inst Plasmas & Fusao Nucl, IST, P-1049001 Lisbon, Portugal
[7] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[8] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[9] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[10] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[11] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[12] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[13] Arizona State Univ, Tempe, AZ USA
[14] Barcelona Supercomp Ctr, Barcelona, Spain
[15] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[16] CEA, IRFM, F-13108 St Paul Les Durance, France
[17] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[18] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[19] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[20] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[21] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[22] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[23] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[24] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[25] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[26] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[27] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[28] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[29] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[30] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[31] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[32] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[33] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[34] Univ Basel, Dept Phys, Basel, Switzerland
[35] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[36] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[37] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[38] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[39] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[40] Dublin City Univ, Dublin, Ireland
[41] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[42] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[43] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[44] European Commiss, B-1049 Brussels, Belgium
[45] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[46] FOM Inst DIFFER, Eindhoven, Netherlands
[47] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[48] Fourth State Res, 503 Lockhart Dr, Austin, TX USA
[49] Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain
[50] KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden
关键词
edge plasma; modelling; SOLPS-ITER; JET; divertor;
D O I
10.1016/j.nme.2018.10.013
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The impact of the finite grid size in SOLPS-ITER edge plasma simulations is assessed for JET H-mode discharges with a metal wall. For a semi-horizontal divertor configuration it is shown that the separatrix density is at least 30% higher when a narrow scrape-off layer (SOL) grid width is chosen in SOLPS-ITER compared to the case for which the SOL grid width is maximised. The density increase is caused by kinetic neutrals being not confined inside the divertor region because of the reduced extent of the plasma grid. In this case, an enhanced level of reflections of energetic neutrals at the low-field side (LFS) metal divertor wall is observed. This leads to a shift of the ionisation source further upstream which must be accounted for as a numerical artefact. An overestimate in the cooling at the divertor entrance is observed in this case, identified by a reduced heat flux decay parameters lambda(div)(q). Otherwise and further upstream the mid-plane heat decay length lambda(q) parameter is not affected by any change in divertor dissipation. This confirms the assumptions made for the ITER divertor design studies, i.e. that lambda(q) upstream is essentially set by the assumptions for the ratio radial to parallel heat conductivity. It is also shown that even for attached conditions the decay length relations lambda(ne)>lambda(Te)>lambda(q) hold in the near-SOL upstream. Thus for interpretative edge plasma simulations one must take the (experimental) value of lambda(ne) into account, rather than lambda(q), as the former actually defines the required minimum upstream SOL grid extent.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 50 条
  • [31] Comparative analysis of core heat transport of JET high density H-mode plasmas in carbon wall and ITER-like wall
    Kim, Hyun-Tae
    Romanelli, M.
    Voitsekhovitch, I.
    Koskela, T.
    Conboy, J.
    Giroud, C.
    Maddison, G.
    Joffrin, E.
    Abhangi, M.
    Abreu, P.
    Aftanas, M.
    Afzal, M.
    Aggarwal, K. M.
    Aho-Mantila, L.
    Ahonen, E.
    Aints, M.
    Airila, M.
    Albanese, R.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allan, P.
    Almaviva, S.
    Alonso, A.
    Alper, B.
    Alsworth, I.
    Alves, D.
    Ambrosino, G.
    Ambrosino, R.
    Amosov, V.
    Andersson, F.
    Andersson Sunden, E.
    Angelone, M.
    Anghel, A.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Apruzzese, G.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arnoux, G.
    Arshad, S.
    Ash, A.
    Asp, E.
    Asunta, O.
    Atanasiu, C. V.
    Austin, Y.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (06)
  • [32] Peculiarity of highly radiating multi-impurity seeded H-mode plasmas on JET with ITER-like wall
    Huber, A.
    Wischmeier, M.
    Bernert, M.
    Wiesen, S.
    Gloeggler, S.
    Aleiferis, S.
    Brezinsek, S.
    Calabro, G.
    Carvalho, P.
    Huber, V.
    Sergienko, G.
    Solano, E. R.
    Giroud, C.
    Groth, M.
    Jachmich, S.
    Linsmeier, Ch
    Matthews, G. F.
    Meigs, A. G.
    Mertens, Ph
    Sertoli, M.
    Silburn, S.
    Telesca, G.
    PHYSICA SCRIPTA, 2020, T171 (01)
  • [33] Coupled core-SOL modelling of W contamination in H-mode JET plasmas with ITER-like wall
    Parail, V.
    Corrigan, G.
    Belo, P. Da Silva Aresta
    De La Luna, E.
    Harting, D.
    Koechl, F.
    Koskela, T.
    Meigs, A.
    Militello-Asp, E.
    Rornanelli, M.
    Tsalas, M.
    JOURNAL OF NUCLEAR MATERIALS, 2015, 463 : 611 - 614
  • [34] Investigation of H-mode density limit in mixed protium-deuterium plasmas at JET with ITER-like wall
    Huber, A.
    Sergienko, G.
    Groth, M.
    Keeling, D.
    Wischmeier, M.
    Douai, D.
    Lerche, E.
    von Thun, C. Perez
    Brezinsek, S.
    Huber, V.
    Boboc, A.
    Brix, M.
    Carvalho, I. S.
    Chankin, A. V.
    Delabie, E.
    Jepu, I.
    Kachkanov, V.
    Kiptily, V.
    Kirov, K.
    Linsmeier, Ch.
    Litherland-Smith, E.
    Lowry, C. G.
    Maggi, C. F.
    Mailloux, J.
    Meigs, A. G.
    Mertens, Ph.
    Poradzinski, M.
    Zastrow, K. -d.
    Zlobinski, M.
    Contributors, Jet
    NUCLEAR MATERIALS AND ENERGY, 2024, 41
  • [35] Power and particle fluxes to plasma-facing components in mitigated-ELM H-mode discharges on JET
    Jachmich, S.
    Arnoux, G.
    Brezinsek, S.
    Devaux, S.
    Eich, T.
    Fundamenski, W.
    Giroud, C.
    Koslowski, H. R.
    Liang, Y.
    de la Luna, E.
    Maddison, G.
    Thomsen, H.
    JOURNAL OF NUCLEAR MATERIALS, 2011, 415 (01) : S894 - S900
  • [36] Plasmoid drift and first wall heat deposition during ITER H-mode dual-SPIs in JOREK simulations
    Hu, D.
    Artola, F. J.
    Nardon, E.
    Lehnen, M.
    Kong, M.
    Bonfiglio, D.
    Hoelzl, M.
    Huijsmans, G. T. A.
    NUCLEAR FUSION, 2024, 64 (08)
  • [37] A study of the atomic and molecular power loss terms in EDGE2D-EIRENE simulations of JET ITER-like wall L-mode discharges
    Lawson, K. D.
    Groth, M.
    Harting, D.
    Menmuir, S.
    Reiter, D.
    Brezinsek, S.
    Corrigan, G.
    Drewelow, P.
    Maggi, C. F.
    Meigs, A. G.
    Simpson, J.
    Stamp, M. F.
    Wiesen, S.
    NUCLEAR MATERIALS AND ENERGY, 2017, 12 : 924 - 930
  • [38] Integrated modelling of a JET type-I ELMy H-mode pulse and predictions for ITER-like wall scenarios
    Wiesen, S.
    Brezinsek, S.
    Jarvinen, A.
    Eich, T.
    Fundamenski, W.
    Huber, A.
    Parail, V.
    Corrigan, G.
    Hayashi, N.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [39] Investigation into the formation of the scrape-off layer density shoulder in JET ITER-like wall L-mode and H-mode plasmas
    Wynn, A.
    Lipschultz, B.
    Cziegler, I.
    Harrison, J.
    Jaervinen, A.
    Matthews, G. F.
    Schmitz, J.
    Tal, B.
    Brix, M.
    Guillemaut, C.
    Frigione, D.
    Huber, A.
    Joffrin, E.
    Kruzei, U.
    Militello, F.
    Nielsen, A.
    Walkden, N. R.
    Wiesen, S.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    NUCLEAR FUSION, 2018, 58 (05)
  • [40] The power threshold of H-mode access in mixed hydrogen-tritium and pure tritium plasmas at JET with ITER-like wall
    Birkenmeier, G.
    Solano, E. R.
    Lerche, E.
    Taylor, D.
    Gallart, D.
    Mantsinen, M. J.
    Delabie, E.
    Carvalho, I. S.
    Carvalho, P.
    Pawelec, E.
    Hillesheim, J. C.
    Parra Diaz, F.
    Silva, C.
    Aleiferis, S.
    Bernardo, J.
    Boboc, A.
    Douai, D.
    Litherland-Smith, E.
    Henriques, R.
    Kirov, K. K.
    Maggi, C. F.
    Mailloux, J.
    Maslov, M.
    Rimini, F. G.
    Silburn, S. A.
    Siren, P.
    Weisen, H.
    NUCLEAR FUSION, 2022, 62 (08)