On the role of finite grid extent in SOLPS-ITER edge plasma simulations for JET H-mode discharges with metallic wall

被引:8
|
作者
Wiesen, S. [1 ,47 ]
Brezinsek, S. [1 ,47 ]
Bonnin, X. [2 ]
Delabie, E. [3 ,81 ]
Frassinetti, L. [4 ,50 ]
Groth, M. [5 ,9 ]
Guillemaut, C. [6 ,16 ,61 ]
Harrison, J. [7 ,15 ]
Harting, D. [7 ,15 ]
Henderson, S. [7 ]
Huber, A. [1 ,47 ]
Kruezi, U. [2 ,15 ]
Pitts, R. A. [2 ]
Wischmeier, M. [8 ,70 ]
Abduallev, S. [47 ]
Abhangi, M. [54 ]
Abreu, P. [61 ]
Afzal, M. [15 ]
Aggarwal, K. M. [37 ]
Ahlgren, T. [109 ]
Ahn, J. H. [16 ]
Aho-Mantila, L. [119 ]
Aiba, N. [77 ]
Airila, M. [119 ]
Albanese, R. [112 ]
Aldred, V. [15 ]
Alegre, D. [101 ]
Alessi, E. [53 ]
Aleynikov, P. [63 ]
Alfier, A. [20 ]
Alkseev, A. [80 ]
Allinson, M. [15 ]
Alper, B. [15 ]
Alves, E. [61 ]
Ambrosino, G. [112 ]
Ambrosino, R. [113 ]
Amicucci, L. [98 ]
Amosov, V. [96 ]
Sunden, E. Andersson [30 ]
Angelone, M. [98 ]
Anghel, M. [93 ]
Angioni, C. [70 ]
Appel, L. [15 ]
Appelbee, C. [15 ]
Arena, P. [38 ]
Ariola, M. [113 ]
Arnichand, H. [16 ]
Arshad, S. [49 ]
Ash, A. [15 ]
Ashikawa, N. [76 ]
机构
[1] Forschungszentrum Julich, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[2] ITER Org, Route Vinon Sur Verdon,CS90 046, F-13067 St Paul Les Durance, France
[3] Oak Ridge Natl Lab, POB 2009, Oak Ridge, TN 37831 USA
[4] KTH, Assoc VR, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[5] Aalto Univ, Espoo, Finland
[6] Univ Lisbon, Inst Plasmas & Fusao Nucl, IST, P-1049001 Lisbon, Portugal
[7] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[8] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[9] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[10] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[11] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[12] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[13] Arizona State Univ, Tempe, AZ USA
[14] Barcelona Supercomp Ctr, Barcelona, Spain
[15] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[16] CEA, IRFM, F-13108 St Paul Les Durance, France
[17] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[18] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[19] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[20] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[21] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[22] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[23] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[24] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[25] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[26] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[27] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[28] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[29] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[30] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[31] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[32] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[33] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[34] Univ Basel, Dept Phys, Basel, Switzerland
[35] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[36] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[37] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[38] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[39] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[40] Dublin City Univ, Dublin, Ireland
[41] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[42] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[43] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[44] European Commiss, B-1049 Brussels, Belgium
[45] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[46] FOM Inst DIFFER, Eindhoven, Netherlands
[47] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[48] Fourth State Res, 503 Lockhart Dr, Austin, TX USA
[49] Fus Energy Joint Undertaking, Josep Pl 2,Torres Diagonal Litoral B3, Barcelona 08019, Spain
[50] KTH, Fusion Plasma Phys, EES, SE-10044 Stockholm, Sweden
关键词
edge plasma; modelling; SOLPS-ITER; JET; divertor;
D O I
10.1016/j.nme.2018.10.013
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The impact of the finite grid size in SOLPS-ITER edge plasma simulations is assessed for JET H-mode discharges with a metal wall. For a semi-horizontal divertor configuration it is shown that the separatrix density is at least 30% higher when a narrow scrape-off layer (SOL) grid width is chosen in SOLPS-ITER compared to the case for which the SOL grid width is maximised. The density increase is caused by kinetic neutrals being not confined inside the divertor region because of the reduced extent of the plasma grid. In this case, an enhanced level of reflections of energetic neutrals at the low-field side (LFS) metal divertor wall is observed. This leads to a shift of the ionisation source further upstream which must be accounted for as a numerical artefact. An overestimate in the cooling at the divertor entrance is observed in this case, identified by a reduced heat flux decay parameters lambda(div)(q). Otherwise and further upstream the mid-plane heat decay length lambda(q) parameter is not affected by any change in divertor dissipation. This confirms the assumptions made for the ITER divertor design studies, i.e. that lambda(q) upstream is essentially set by the assumptions for the ratio radial to parallel heat conductivity. It is also shown that even for attached conditions the decay length relations lambda(ne)>lambda(Te)>lambda(q) hold in the near-SOL upstream. Thus for interpretative edge plasma simulations one must take the (experimental) value of lambda(ne) into account, rather than lambda(q), as the former actually defines the required minimum upstream SOL grid extent.
引用
收藏
页码:174 / 181
页数:8
相关论文
共 50 条
  • [11] Multi-machine SOLPS-ITER comparison of impurity seeded H-mode radiative divertor regimes with metal walls
    Rozhansky, V
    Kaveeva, E.
    Senichenkov, I
    Veselova, I
    Voskoboynikov, S.
    Pitts, R. A.
    Coster, D.
    Giroud, C.
    Wiesen, S.
    NUCLEAR FUSION, 2021, 61 (12)
  • [12] Plasma core power exhaust in ELMy H-Mode in JET with ITER-Like Wall
    Guillemaut, C.
    Metzger, C.
    Appel, L.
    Drewelow, P.
    Horvath, L.
    Matthews, G. F.
    Szepesi, G.
    Solano, E. R.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (07)
  • [13] First SOLPS-ITER simulations of ASDEX Upgrade partially detached H-mode with boron impurity: The missing radiation at the outer strike-point region
    Makarov, S. O.
    Coster, D. P.
    Gleiter, T.
    Brida, D.
    Muraca, M.
    Dux, R.
    David, P.
    Kurzan, B.
    Bonnin, X.
    O'Mullane, M.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2024, 64 (7-8)
  • [14] Discretization error estimation for EU-DEMO plasma-edge simulations using SOLPS-ITER with fluid neutrals
    Van Uytven, Wim
    Dekeyser, Wouter
    Subba, Fabio
    Wiesen, Sven
    Horsten, Niels
    Vervloesem, Nathan
    Baelmans, Martine
    CONTRIBUTIONS TO PLASMA PHYSICS, 2024, 64 (7-8)
  • [15] Modelling of edge plasma transport during H-mode of EAST by SOLPS5.0
    Du Hai-Long
    Sang Chao-Feng
    Wang Liang
    Sun Ji-Zhong
    Liu Shao-Cheng
    Wang Hui-Qian
    Zhang Ling
    Guo Hou-Yang
    Wang De-Zhen
    ACTA PHYSICA SINICA, 2013, 62 (24) : 245206
  • [16] Impact of divertor geometry on H-mode confinement in the JET metallic wall
    Joffrin, E.
    Tamain, P.
    Belonohy, E.
    Bufferand, H.
    Buratti, P.
    Challis, C. D.
    Delabie, E.
    Drewelow, P.
    Dodt, D.
    Frassinetti, L.
    Garcia, J.
    Giroud, C.
    Groth, M.
    Hobirk, J.
    Jarvinen, A. E.
    Kim, H. -T.
    Koechl, F.
    Kruezi, U.
    Lipschutz, B.
    Lomas, P. J.
    de la Luna, E.
    Loarer, T.
    Maget, P.
    Maggi, C.
    Matthews, G.
    Maviglia, F.
    Meigs, A.
    Nunes, I.
    Pucella, G.
    Rimini, F.
    Saarelma, S.
    Solano, E.
    Sips, A. C. C.
    Tsalas, M.
    Voitsekhovitch, I.
    Weisen, H.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    NUCLEAR FUSION, 2017, 57 (08)
  • [17] The role of edge plasma parameters in H-mode density limit on the JET-ILW
    Sun, H. J.
    Goldston, R. J.
    Huber, A.
    Xu, X. Q.
    Flanagan, J.
    McDonald, D. C.
    de la Luna, E.
    Maslov, M.
    Harrison, J. R.
    Militello, F.
    Fessey, J.
    Cramp, S.
    NUCLEAR FUSION, 2021, 61 (06)
  • [18] Simulations of tungsten transport in the edge of JET ELMy H-mode plasmas
    Jarvinen, A.
    Groth, M.
    Moulton, D.
    Strachan, J.
    Wiesen, S.
    Belo, P.
    Beurskens, M. N. A.
    Corrigan, G.
    Eich, T.
    Giroud, C.
    Havlickova, E.
    Jachmich, S.
    Lehnen, M.
    Lonnroth, J.
    Tskhakaya, D.
    JOURNAL OF NUCLEAR MATERIALS, 2013, 438 : S1005 - S1009
  • [19] W transport and accumulation control in the termination phase of JET H-mode discharges and implications for ITER
    Kochl, F.
    Loarte, A.
    de la Luna, E.
    Parail, V.
    Corrigan, G.
    Harting, D.
    Nunes, I.
    Reux, C.
    Rimini, F. G.
    Polevoi, A.
    Romanelli, M.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    Appel, L.
    Appelbee, C.
    Arena, P.
    Ariola, M.
    Arnichand, H.
    Arshad, S.
    Ash, A.
    Ashikawa, N.
    Aslanyan, V.
    Asunta, O.
    Auriemma, F.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (07)
  • [20] Validation of SOLPS-ITER simulations with kinetic, fluid, and hybrid neutral models for JET-ILW low-confinement mode plasmas
    Horsten, N.
    Groth, M.
    Dekeyser, W.
    Van Uytven, W.
    Aleiferis, S.
    Carli, S.
    Karhunen, J.
    Lawson, K. D.
    Lomanowski, B.
    Meigs, A. G.
    Menmuir, S.
    Shaw, A.
    Solokha, V.
    Thomas, B.
    NUCLEAR MATERIALS AND ENERGY, 2022, 33