Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application

被引:114
|
作者
Singh, B. N. [1 ]
Panda, N. N. [1 ]
Mund, R. [1 ]
Pramanik, K. [1 ]
机构
[1] Natl Inst Technol, Dept Biotechnol & Med Engn, Rourkela, India
关键词
Silk fibroin; Electrospinning; Carboxymethyl cellulose; Calcium phosphate; Tissue engineered scaffold; COMPOSITE; MEMBRANE; RHEOLOGY; BIOCOMPATIBILITY; MINERALIZATION; CELLS; HEAVY; MAT; PH;
D O I
10.1016/j.carbpol.2016.05.088
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Novel silk fibroin (SF) and carboxymethyl cellulose (CMC) composite nanofibrous scaffold (SFC) were developed to investigate their ability to nucleate bioactive nanosized calcium phosphate (Ca/P) by biomineralization for bone tissue engineering application. The composite nanofibrous scaffold was prepared by free liquid surface electrospinning method. The developed composite nanofibrous scaffold was observed to control the size of Ca/P particle (<= 100 nm) as well as uniform nucleation of Ca/P over the surface. The obtained nanofibrous scaffolds were fully characterized for their functional, structural and mechanical property. The XRD and EDX analysis depicted the development of apatite like crystals over SFC scaffolds of nanospherical in morphology and distributed uniformly throughout the surface of scaffold. Additionally, hydrophilicity as a measure of contact angle and water uptake capacity is higher than pure SF scaffold representing the superior cell supporting property of the SF/CMC scaffold. The effect of biomimetic Ca/P on osteogenic differentiation of umbilical cord blood derived human mesenchymal stem cells (hMSCs) studied in early and late stage of differentiation shows the improved osteoblastic differentiation capability as compared to pure silk fibroin. The obtained result confirms the positive correlation of alkaline phosphatase activity, alizarin staining and expression of runt-related transcription factor 2, osteocalcin and typel collagen representing the biomimetic property of the scaffolds. Thus, the developed composite has been demonstrated to be a potential scaffold for bone tissue engineering application. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:335 / 347
页数:13
相关论文
共 50 条
  • [31] Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications
    Muthumanickkam Andiappan
    Subramanian Sundaramoorthy
    Niladrinath Panda
    Gowri Meiyazhaban
    Sofi Beaula Winfred
    Ganesh Venkataraman
    Pramanik Krishna
    Progress in Biomaterials, 2013, 2 (1)
  • [32] Potential of inherent RGD containing silk fibroin-poly ((sic)-caprolactone) nanofibrous matrix for bone tissue engineering
    Bhattacharjee, Promita
    Kundu, Banani
    Naskar, Deboki
    Kim, Hae-Won
    Bhattacharya, Debasis
    Maiti, T. K.
    Kundu, S. C.
    CELL AND TISSUE RESEARCH, 2016, 363 (02) : 525 - 540
  • [33] Nano-yarns Reinforced Silk Fibroin Composites Scaffold for Bone Tissue Engineering
    Li, Jun
    Liu, Wei
    Yin, An-Lin
    Wu, Jing-Lei
    Al-Deyab, Salem S.
    El-Newehy, Mohamed
    Mo, Xiu-Mei
    TEXTILE BIOENGINEERING AND INFORMATICS SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 2012, : 175 - 183
  • [34] Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering
    Kim, Jung-Ho
    Kim, Dong-Kyu
    Lee, Ok Joo
    Ju, Hyung Woo
    Lee, Jung Min
    Moon, Bo Mi
    Park, Hyun Jung
    Kim, Dong Wook
    Lee, Jun Ho
    Park, Chan Hum
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 82 : 160 - 167
  • [35] Biomimetic nanofibrous scaffolds for bone tissue engineering
    Holzwarth, Jeremy M.
    Ma, Peter X.
    BIOMATERIALS, 2011, 32 (36) : 9622 - 9629
  • [36] Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application
    Vandghanooni, Somayeh
    Samadian, Hadi
    Akbari-Nakhjavani, Sattar
    Khalilzadeh, Balal
    Eskandani, Morteza
    Massoumi, Bakhshali
    Jaymand, Mehdi
    JOURNAL OF MATERIALS RESEARCH, 2022, 37 (03) : 796 - 806
  • [37] Electroactive nanofibrous scaffold based on polythiophene for bone tissue engineering application
    Somayeh Vandghanooni
    Hadi Samadian
    Sattar Akbari-Nakhjavani
    Balal Khalilzadeh
    Morteza Eskandani
    Bakhshali Massoumi
    Mehdi Jaymand
    Journal of Materials Research, 2022, 37 : 796 - 806
  • [38] Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication
    Lee, Dae Hoon
    Tripathy, Nirmalya
    Shin, Jae Hun
    Song, Jeong Eun
    Cha, Jae Geun
    Min, Kyung Dan
    Park, Chan Hum
    Khang, Gilson
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2017, 95 : 14 - 23
  • [39] Substantial effect of silk fibroin reinforcement on properties of hydroxyapatite/silk fibroin nanocomposite for bone tissue engineering application
    Mobika, J.
    Rajkumar, M.
    Priya, V. Nithya
    Sibi, S. P. Linto
    JOURNAL OF MOLECULAR STRUCTURE, 2020, 1206