LARGE TIME BEHAVIOR FOR A NONLOCAL NONLINEAR GRADIENT FLOW

被引:2
|
作者
Li, Feng [1 ]
Lindgren, Erik [1 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlocal parabolic equations; fractional p-Laplacian; asymptotic behavior; sharp decay; Moser iteration; FRACTIONAL P-LAPLACIAN; PARABOLIC EQUATIONS;
D O I
10.3934/dcds.2022079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time behavior of the nonlinear and nonlocal equation v(t) + (-Delta(p))(s) v = f, where p is an element of (1, 2) boolean OR (2, infinity), s is an element of (0, 1) and (-Delta(p))(s) v(x, t) = 2 P.V. integral(Rn) vertical bar v(x, t) - v(x + y, t)vertical bar(p-2)(v(x, t) - v(x + y, t))/vertical bar y vertical bar(n+sp) dy. This equation arises as a gradient flow in fractional Sobolev spaces. We obtain sharp decay estimates as t -> infinity. The proofs are based on an iteration method in the spirit of J. Moser previously used by P. Juutinen and P. Lindqvist.
引用
收藏
页码:1516 / 1546
页数:31
相关论文
共 50 条