LARGE TIME BEHAVIOR FOR A NONLOCAL NONLINEAR GRADIENT FLOW

被引:2
|
作者
Li, Feng [1 ]
Lindgren, Erik [1 ]
机构
[1] Uppsala Univ, Dept Math, Box 480, S-75106 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Nonlocal parabolic equations; fractional p-Laplacian; asymptotic behavior; sharp decay; Moser iteration; FRACTIONAL P-LAPLACIAN; PARABOLIC EQUATIONS;
D O I
10.3934/dcds.2022079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the large time behavior of the nonlinear and nonlocal equation v(t) + (-Delta(p))(s) v = f, where p is an element of (1, 2) boolean OR (2, infinity), s is an element of (0, 1) and (-Delta(p))(s) v(x, t) = 2 P.V. integral(Rn) vertical bar v(x, t) - v(x + y, t)vertical bar(p-2)(v(x, t) - v(x + y, t))/vertical bar y vertical bar(n+sp) dy. This equation arises as a gradient flow in fractional Sobolev spaces. We obtain sharp decay estimates as t -> infinity. The proofs are based on an iteration method in the spirit of J. Moser previously used by P. Juutinen and P. Lindqvist.
引用
收藏
页码:1516 / 1546
页数:31
相关论文
共 50 条
  • [11] Large-Time Behavior for a Fully Nonlocal Heat Equation
    Cortazar, Carmen
    Quiros, Fernando
    Wolanski, Noemi
    VIETNAM JOURNAL OF MATHEMATICS, 2021, 49 (03) : 831 - 844
  • [12] Large-Time Behavior for a Fully Nonlocal Heat Equation
    Carmen Cortázar
    Fernando Quirós
    Noemí Wolanski
    Vietnam Journal of Mathematics, 2021, 49 : 831 - 844
  • [13] Large time behavior and Lyapunov functionals for a nonlocal differential equation
    Danielle Hilhorst
    Philippe Laurençot
    Thanh-Nam Nguyen
    Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [14] Gradient estimates for parabolic nonlinear nonlocal equations
    Diening, Lars
    Kim, Kyeongbae
    Lee, Ho-Sik
    Nowak, Simon
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (03)
  • [15] Large deflection of a nonlocal gradient cantilever beam
    Ussorio, Daniele
    Vaccaro, Marzia Sara
    Barretta, Raffaele
    Luciano, Raimondo
    de Sciarra, Francesco Marotti
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2025, 206
  • [16] Sparse identification of nonlocal interaction kernels in nonlinear gradient flow equations via partial inversion
    Carrillo, Jose A.
    Estrada-Rodriguez, Gissell
    Mikolas, Laszlo
    Tang, Sui
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2025,
  • [17] Nonlinear resonant behavior of thick multilayered nanoplates via nonlocal strain gradient elasticity theory
    Mahmoudpour, E.
    ACTA MECHANICA, 2020, 231 (06) : 2651 - 2667
  • [18] Nonlinear resonant behavior of thick multilayered nanoplates via nonlocal strain gradient elasticity theory
    E. Mahmoudpour
    Acta Mechanica, 2020, 231 : 2651 - 2667
  • [19] Large time asymptotics for the higher-order nonlinear nonlocal Schrodinger equation
    Juarez-Campos, Beatriz
    Naumkin, Pavel I.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 205
  • [20] Gradient flow of O(N) nonlinear sigma model at large N
    Sinya Aoki
    Kengo Kikuchi
    Tetsuya Onogi
    Journal of High Energy Physics, 2015