GLOBAL CAUCHY PROBLEM OF A SYSTEM OF PARABOLIC CONSERVATION LAWS ARISING FROM A KELLER-SEGEL TYPE CHEMOTAXIS MODEL
被引:10
|
作者:
Zhu, Neng
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R ChinaNanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Zhu, Neng
[1
]
Liu, Zhengrong
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R ChinaNanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Liu, Zhengrong
[2
]
Martinez, Vincent R.
论文数: 0引用数: 0
h-index: 0
机构:
Tulane Univ, Dept Math, New Orleans, LA 70118 USANanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Martinez, Vincent R.
[3
]
Zhao, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Tulane Univ, Dept Math, New Orleans, LA 70118 USANanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
Zhao, Kun
[3
]
机构:
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] South China Univ Technol, Sch Math, Guangzhou 510640, Guangdong, Peoples R China
[3] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
We study the qualitative behavior of solutions to the Cauchy problem of a coupled system in (p, q) of parabolic conservation laws in one space dimension posed on R. This system arises from a Keller-Segel type repulsive model for chemotaxis with singular sensitivity and nonlinear production rate. In particular, we initiate the study of such models that correspond to a nonlinear production rate of g(p) = p(gamma) , where gamma > 1, in the regime when the ratio of chemical-to-cell diffusivity is of order epsilon, where epsilon > 0 denotes the chemical diffusion coefficient. By assuming H-1 initial data and utilizing energy methods, it is shown that regardless of the magnitude of initial data, there exist global-in-time solutions to the Cauchy problem, and the regularity of the solution depends on the specific values of gamma and epsilon. Moreover, the global asymptotic stability of constant ground states and the zero chemical diffusion limit (epsilon -> 0) of solutions are investigated.
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nie, Yao
Zheng, Xiaoxin
论文数: 0引用数: 0
h-index: 0
机构:
Beihang Univ, Sch Math Sci, Beijing 100191, Peoples R China
Minist Educ, Key Lab Math Informat & Behav Semant, Beijing 100191, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
机构:
Waseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, JapanWaseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan