The Keller-Segel system of parabolic-parabolic type in homogeneous Besov spaces framework

被引:6
|
作者
Takeuchi, Taiki [1 ]
机构
[1] Waseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
关键词
Keller-Segel system; Maximal Lorentz regularity; Homogeneous Besov spaces; Scaling invariant; NAVIER-STOKES EQUATION; IN-TIME SOLUTIONS; CHEMOTAXIS SYSTEM; DISTRIBUTIONS; MODEL; LP;
D O I
10.1016/j.jde.2021.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show the existence and uniqueness of local strong solutions of Keller-Segel system of parabolic parabolic type for arbitrary initial data in the homogeneous Besov space which is scaling invariant. We also construct global strong solutions for small initial data, where the solutions belong to the Lorentz space in time direction. The proof is based on the maximal Lorentz regularity theorem of heat equations. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:609 / 640
页数:32
相关论文
共 50 条