The Keller-Segel system of parabolic-parabolic type in homogeneous Besov spaces framework
被引:6
|
作者:
Takeuchi, Taiki
论文数: 0引用数: 0
h-index: 0
机构:
Waseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, JapanWaseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
Takeuchi, Taiki
[1
]
机构:
[1] Waseda Univ, Dept Math, Fac Sci & Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
We show the existence and uniqueness of local strong solutions of Keller-Segel system of parabolic parabolic type for arbitrary initial data in the homogeneous Besov space which is scaling invariant. We also construct global strong solutions for small initial data, where the solutions belong to the Lorentz space in time direction. The proof is based on the maximal Lorentz regularity theorem of heat equations. (c) 2021 Elsevier Inc. All rights reserved.
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
Univ Paderborn, Inst Math, D-33098 Paderborn, GermanyDalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
机构:
Tokyo Gakugei Univ, Dept Math, Tokyo 1848501, Japan
Japan Sci & Technol Agcy, Precursory Res Embryon Sci & Technol PRESTO, Kawaguchi, Saitama 3320012, JapanTokyo Gakugei Univ, Dept Math, Tokyo 1848501, Japan