DETERMINATION OF AN UNKNOWN SOURCE TERM TEMPERATURE DISTRIBUTION FOR THE SUB-DIFFUSION EQUATION AT THE INITIAL AND FINAL DATA

被引:0
|
作者
Kirane, Mokhtar [1 ,2 ,3 ]
Samet, Bessem [4 ]
Torebek, Berikbol T. [5 ,6 ]
机构
[1] Univ La Rochelle, Fac Sci Pole Sci & Technol, LaSIE, Ave M Crepeau, F-17042 La Rochelle, France
[2] King Abdulaziz Univ, Dept Math, Fac Sci, NAAM Res Grp, POB 80203, Jeddah 21589, Saudi Arabia
[3] RUDN Univ, 6 Miklukho Maklay St, Moscow 117198, Russia
[4] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
[5] Inst Math & Math Modeling, Dept Differential Equat, 125 Pushkin Str, Alma Ata 050010, Kazakhstan
[6] Al Farabi Kazakh Natl Univ, 71 Al Farabi Ave, Alma Ata 050040, Kazakhstan
关键词
Inverse problem; involution; nonlocal sub-diffusion equation; fractional-time diffusion equation; DENSITY;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of problems modeling the process of determining the temperature and density of nonlocal sub-diffusion sources given by initial and finite temperature. Their mathematical statements involve inverse problems for the fractional-time heat equation in which, solving the equation, we have to find the an unknown right-hand side depending only on the space variable. The results on existence and uniqueness of solutions of these problems are presented.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Determination of an Unknown Heat Source Term from Boundary Data
    Hu, Y.
    Wei, T.
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2012, 87 (04): : 307 - 325
  • [22] Numerical Inversion for the Initial Distribution in the Multi-Term Time-Fractional Diffusion Equation Using Final Observations
    Sun, Chunlong
    Li, Gongsheng
    Jia, Xianzheng
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (06) : 1525 - 1546
  • [23] A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation
    Zhang, Haixiang
    Yang, Xuehua
    Tang, Qiong
    Xu, Da
    Computers and Mathematics with Applications, 2022, 109 : 180 - 190
  • [24] A robust error analysis of the OSC method for a multi-term fourth-order sub-diffusion equation
    Zhang, Haixiang
    Yang, Xuehua
    Tang, Qiong
    Xu, Da
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 109 : 180 - 190
  • [25] On the simultaneous reconstruction of the initial diffusion time and source term for the time-fractional diffusion equation
    Ruan, Zhousheng
    Chen, Zhenxing
    Luo, Min
    Zhang, Wen
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (11) : 2077 - 2093
  • [26] Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation
    Wen, Jin
    Liu, Zhuan-Xia
    Yue, Chong-Wang
    Wang, Shi-Juan
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (05) : 3219 - 3250
  • [27] Landweber iteration method for simultaneous inversion of the source term and initial data in a time-fractional diffusion equation
    Jin Wen
    Zhuan-Xia Liu
    Chong-Wang Yue
    Shi-Juan Wang
    Journal of Applied Mathematics and Computing, 2022, 68 : 3219 - 3250
  • [28] Tikhonov Regularisation Method for Simultaneous Inversion of the Source Term and Initial Data in a Time-Fractional Diffusion Equation
    Ruan, Zhousheng
    Yang, Jerry Zhijian
    Lu, Xiliang
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (03) : 273 - 300
  • [29] Simultaneous Inversion of the Source Term and Initial Value of the Time Fractional Diffusion Equation
    Yang, Fan
    Xu, Jian-ming
    Li, Xiao-xiao
    MATHEMATICAL MODELLING AND ANALYSIS, 2024, 29 (02) : 193 - 214
  • [30] Conjugate gradient method for simultaneous identification of the source term and initial data in a time-fractional diffusion equation
    Wen, Jin
    Liu, Zhuan-Xia
    Wang, Shan-Shan
    APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01): : 324 - 338