Remarks about Preisach function approximation using Lorentzian function and its identification for nonoriented steels

被引:22
|
作者
Azzerboni, B [1 ]
Cardelli, E
Finocchio, G
La Foresta, F
机构
[1] Univ Messina, Dipartimento Fis Mat & Tecnol Fis Avanzate, I-98166 Messina, Italy
[2] Univ Perugia, Dipartimento Ingn Ind, I-06125 Perugia, Italy
关键词
Lorentzian function; nonoriented grain steels; Preisach function; scalar magnetic hysteresis modeling;
D O I
10.1109/TMAG.2003.815879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we will discuss the use of the Lorentzian function as a possible candidate for the accurate approximation of the Preisach function in the modeling of scalar hysteresis for nonoriented grain steels. In particular we discuss here the identification procedure of the parameters of the function from measured data.
引用
收藏
页码:3028 / 3030
页数:3
相关论文
共 50 条
  • [41] LabVIEW Preisach function estimation using measured major hysteresis cycle
    Motoasca, Septimiu
    2017 INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT (OPTIM) & 2017 INTL AEGEAN CONFERENCE ON ELECTRICAL MACHINES AND POWER ELECTRONICS (ACEMP), 2017, : 146 - 151
  • [42] Determination of the distribution function of Preisach's model using centred cycles
    Bernard, Y
    Mendes, E
    Ren, Z
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2000, 19 (04) : 997 - 1006
  • [43] An Inverted Preisach Model With Analytical Weight Function and Its Numerical Discrete Formulation
    Bi, Shasha
    Wolf, Felix
    Lerch, Reinhard
    Sutor, Alexander
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (11)
  • [44] Function approximation using generalized adalines
    Wu, Jiann-Ming
    Lin, Zheng-Han
    Hsu, Pei-Hsun
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (03): : 541 - 558
  • [45] Smart Sensor Using Function Approximation
    Shaikh, Kader B. T.
    2017 2ND IEEE INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ELECTRONICS, INFORMATION & COMMUNICATION TECHNOLOGY (RTEICT), 2017, : 1223 - 1226
  • [46] Function Approximation Using Haar Wavelets
    Majak, Juri
    Eerme, Martin
    Haavajoe, Anti
    Karunanidhi, Ramachandran
    Scholz, Dieter
    Lepik, Anti
    INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2019, 2020, 2293
  • [47] ON STRONG APPROXIMATION TO A FUNCTION BY ITS JACOBI SERIES
    BEOHAR, BK
    TRIVEDI, GS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1990, 21 (02): : 167 - 171
  • [48] Approximation of a function given by its Laurent series
    VanIseghem, J
    GravesMorris, PR
    NUMERICAL ALGORITHMS, 1996, 11 (1-4) : 339 - 351
  • [49] Approximation of function and its derivatives by Fuzzy Systems
    Salgado, Paulo
    International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 1, Proceedings, 2006, : 543 - 548
  • [50] APPROXIMATION OF A FUNCTION AND ITS DERIVATIVE WITH A NEURAL NETWORK
    CARDALIAGUET, P
    EUVRARD, G
    NEURAL NETWORKS, 1992, 5 (02) : 207 - 220