Remarks about Preisach function approximation using Lorentzian function and its identification for nonoriented steels

被引:22
|
作者
Azzerboni, B [1 ]
Cardelli, E
Finocchio, G
La Foresta, F
机构
[1] Univ Messina, Dipartimento Fis Mat & Tecnol Fis Avanzate, I-98166 Messina, Italy
[2] Univ Perugia, Dipartimento Ingn Ind, I-06125 Perugia, Italy
关键词
Lorentzian function; nonoriented grain steels; Preisach function; scalar magnetic hysteresis modeling;
D O I
10.1109/TMAG.2003.815879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we will discuss the use of the Lorentzian function as a possible candidate for the accurate approximation of the Preisach function in the modeling of scalar hysteresis for nonoriented grain steels. In particular we discuss here the identification procedure of the parameters of the function from measured data.
引用
收藏
页码:3028 / 3030
页数:3
相关论文
共 50 条
  • [21] Flaws identification using an approximation function and artificial neural networks
    Chady, Tomasz
    Lopato, Przemyslaw
    IEEE TRANSACTIONS ON MAGNETICS, 2007, 43 (04) : 1769 - 1772
  • [22] REMARKS ON THE APPROXIMATION OF THE LIKELIHOOD FUNCTION OF A STATIONARY GAUSSIAN PROCESS
    COURSOL, J
    DACUNHACASTELLE, D
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 1983, 27 (01) : 162 - 167
  • [23] REMARKS ON PROPERTY OF APPROXIMATION OF LOCAL CONVEX FUNCTION SPACES
    BIERSTED.KD
    MEISE, R
    MATHEMATISCHE ANNALEN, 1974, 209 (02) : 99 - 107
  • [24] Two Methods of Scalar Preisach Function Identification for Grain Oriented Steel
    Eichler, Jakub
    Kosek, Miloslav
    Novak, Miroslav
    2015 INTERNATIONAL CONFERENCE ON APPLIED ELECTRONICS (AE), 2015, : 37 - 40
  • [25] An Improved Preisach Distribution Function Identification Method Considering the Reversible Magnetization
    Chen, Long
    Cui, Lvsheng
    Ben, Tong
    Jing, Libing
    CES TRANSACTIONS ON ELECTRICAL MACHINES AND SYSTEMS, 2023, 7 (04) : 351 - 357
  • [26] An Improved Preisach Distribution Function Identification Method Considering the Reversible Magnetization
    Long Chen
    Lvsheng Cui
    Tong Ben
    Libing Jing
    CES Transactions on Electrical Machines and Systems, 2023, 7 (04) : 351 - 357
  • [27] Some Remarks on Taylor's Polynomials Visualization Using Mathematica in Context of Function Approximation
    Wojas, Wlodzimierz
    Krupa, Jan
    APPLICATIONS OF COMPUTER ALGEBRA, 2017, 198 : 487 - 498
  • [28] Lorentzian path integral for quantum tunneling and WKB approximation for wave-function
    Hiroki Matsui
    The European Physical Journal C, 82
  • [29] Lorentzian path integral for quantum tunneling and WKB approximation for wave-function
    Matsui, Hiroki
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (05):
  • [30] ABOUT AN ALGORITHM OF FUNCTION APPROXIMATION BY THE LINEAR SPLINES
    Bayraktar, B.
    Kudaev, V.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2016, 6 (02): : 333 - 341