Remarks about Preisach function approximation using Lorentzian function and its identification for nonoriented steels

被引:22
|
作者
Azzerboni, B [1 ]
Cardelli, E
Finocchio, G
La Foresta, F
机构
[1] Univ Messina, Dipartimento Fis Mat & Tecnol Fis Avanzate, I-98166 Messina, Italy
[2] Univ Perugia, Dipartimento Ingn Ind, I-06125 Perugia, Italy
关键词
Lorentzian function; nonoriented grain steels; Preisach function; scalar magnetic hysteresis modeling;
D O I
10.1109/TMAG.2003.815879
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we will discuss the use of the Lorentzian function as a possible candidate for the accurate approximation of the Preisach function in the modeling of scalar hysteresis for nonoriented grain steels. In particular we discuss here the identification procedure of the parameters of the function from measured data.
引用
收藏
页码:3028 / 3030
页数:3
相关论文
共 50 条
  • [1] Analytical solution of Everett integral using Lorentzian Preisach function approximation
    Finocchio, G
    Carpentieri, M
    Cardelli, E
    Azzerboni, B
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 300 (02) : 451 - 470
  • [2] Super-Lorentzian Preisach function and its applicability to model scalar hysteresis
    Azzerboni, B
    Carpentieri, M
    Finocchio, G
    Ipsale, M
    PHYSICA B-CONDENSED MATTER, 2004, 343 (1-4) : 121 - 126
  • [3] Approximation of the Preisach function using feedforward neural network
    Dotterweich, M
    Szymanski, G
    Waszak, M
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2003, 17 (1-3) : 243 - 250
  • [4] An isotropic analytical vector Preisach model based on the Lorentzian function
    Finocchio, G
    Carpentieri, M
    Azzerboni, B
    Ampelli, C
    Maschio, G
    SECOND SEEHEIM CONFERENCE ON MAGNETISM, PROCEEDINGS, 2004, : 3740 - 3743
  • [5] Reversible magnetization and lorentzian function approximation
    Azzerboni, B., 1600, American Institute of Physics Inc. (93):
  • [6] Reversible magnetization and Lorentzian function approximation
    Azzerboni, B
    Cardelli, E
    Della Torre, E
    Finocchio, G
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 6635 - 6637
  • [7] Preisach function identification by neural networks
    Cirrincione, M
    Miceli, R
    Galluzzo, GR
    Trapanese, M
    IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (05) : 2421 - 2423
  • [8] Modelling and identification of iron losses in nonoriented steel laminations using Preisach theory
    Dupre, LR
    VanKeer, R
    Melkebeek, JAA
    IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 1997, 144 (04): : 227 - 234
  • [9] Preisach distribution function approximation with wavelet interpolation technique
    Schiffer, A
    Ivanyi, A
    PHYSICA B-CONDENSED MATTER, 2006, 372 (1-2) : 101 - 105
  • [10] An analytical method for the identification of the Preisach distribution function
    Ragusa, C
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 254 : 259 - 261