Cellular responses to flow diverters in a tissue-engineered aneurysm model

被引:6
|
作者
Liu, Wenjing [1 ,2 ]
Dai, Daying [1 ]
Ding, Yong-Hong [1 ]
Liu, Yang [1 ]
Temnyk, Kristen [3 ]
Shen, Tiffany W. [3 ]
Cardinal, Kristen O'Halloran [3 ]
Kallmes, David F. [1 ]
Kadirvel, Ramanathan [1 ]
机构
[1] Mayo Clin, Radiol, Rochester, MN 55905 USA
[2] China Med Univ, Geriatr, Hosp 1, Shenyang, Peoples R China
[3] Cal Poly, Biomed Engn Dept, San Luis Obispo, CA USA
基金
美国国家卫生研究院;
关键词
aneurysm; flow diverter; device; EMBOLIZATION; CELLS;
D O I
10.1136/neurintsurg-2020-016593
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
Background Notwithstanding the widespread implementation of flow diverters (FDs) in the treatment of intracranial aneurysms, the exact mechanism of action of these devices remains elusive. We aimed to advance the understanding of cellular responses to FD implantation using a 3D tissue-engineered in vitro aneurysm model. Methods Aneurysm-like blood vessel mimics (aBVMs) were constructed by electrospinning polycaprolactone nanofibers onto desired aneurysm-like geometries. aBVMs were seeded with human aortic smooth muscle cells (SMCs) followed by human aortic endothelial cells (ECs). FDs were then deployed in the parent vessel of aBVMs covering the aneurysm neck and were cultivated for 7, 14, or 28 days (n=3 for each time point). The EC and SMC coverage in the neck was measured semi-quantitatively. Results At day 7, the device segment in contact with the parent vessel was partially endothelialized. Also, the majority of device struts, but not pores, at the parent vessel and neck interface were partially covered with ECs and SMCs, while device struts in the middle of the neck lacked cell coverage. At 14 days, histology verified a neointimal-like lining had formed, partially covering both the struts and pores in the center of the neck. At 28 days, the majority of the neck was covered with a translucent neointimal-like layer. A higher degree of cellular coverage was seen on the struts and pores at the neck at 28 days compared with both 7 and 14 days. Conclusion aBVMs can be a valuable alternative tool for evaluating the healing mechanisms of endovascular aneurysm devices.
引用
收藏
页码:746 / 751
页数:6
相关论文
共 50 条
  • [41] Tissue-Engineered Urinary Conduits
    Kates, Max
    Singh, Anirudha
    Matsui, Hotaka
    Steinberg, Gary D.
    Smith, Norm D.
    Schoenberg, Mark P.
    Bivalacqua, Trinity J.
    CURRENT UROLOGY REPORTS, 2015, 16 (03)
  • [42] Tissue-engineered trachea: A review
    Law, Jia Xian
    Liau, Ling Ling
    Aminuddin, Bin Saim
    Ruszymah, Bt Hj Idrus
    INTERNATIONAL JOURNAL OF PEDIATRIC OTORHINOLARYNGOLOGY, 2016, 91 : 55 - 63
  • [43] Tissue-engineered Artificial Urothelium
    Koji Kawai
    Kazunori Hattori
    Hideyuki Akaza
    World Journal of Surgery, 2000, 24 : 1160 - 1162
  • [44] Tissue-engineered spinal cord
    Vacanti, MP
    Leonard, JL
    Dore, B
    Bonassar, LJ
    Cao, Y
    Stachelek, SJ
    Vacanti, JP
    O'Connell, F
    Yu, CS
    Farwell, AP
    Vacanti, CA
    TRANSPLANTATION PROCEEDINGS, 2001, 33 (1-2) : 592 - 598
  • [45] Tissue-engineered bone regeneration
    Petite, H
    M S-MEDECINE SCIENCES, 2001, 17 (01): : 128 - 130
  • [46] Osteoclastogenesis on tissue-engineered bone
    Nakagawa, K
    Abukawa, H
    Shin, MY
    Terai, H
    Troulis, MJ
    Vacanti, JP
    TISSUE ENGINEERING, 2004, 10 (1-2): : 93 - 100
  • [47] Tissue-engineered artificial urothelium
    Kawai, K
    Hattori, K
    Akaza, H
    WORLD JOURNAL OF SURGERY, 2000, 24 (10) : 1160 - 1162
  • [48] Tissue-engineered nipple reconstruction
    Cao, YL
    Lach, E
    Kim, TH
    Rodríguez, A
    Arévalo, CA
    Vacanti, CA
    PLASTIC AND RECONSTRUCTIVE SURGERY, 1998, 102 (07) : 2293 - 2298
  • [49] Tissue-engineered skin substitutes
    Marchant, K.
    Hendrickson, D. A.
    EQUINE VETERINARY EDUCATION, 2022, 34 (04) : 190 - 191
  • [50] Tissue-Engineered Tracheal Transplantation
    Baiguera, Silvia
    Birchall, Martin A.
    Macchiarini, Paolo
    TRANSPLANTATION, 2010, 89 (05) : 485 - 491