Local cyclicity of isogeny classes of abelian varieties defined over finite fields

被引:4
|
作者
Giangreco-Maidana, Alejandro J. [1 ]
机构
[1] Aix Marseille Univ, CNRS, Cent Marseille, UMR I2M 7373, F-13453 Marseille, France
关键词
Group of rational points; Cyclic; Local; Abelian variety; Finite field; ELLIPTIC-CURVES; POINTS;
D O I
10.1016/j.ffa.2019.101628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a prime number l, an isogeny class A of abelian varieties is called l-cyclic if every variety in A have a cyclic l-part of its group of rational points. More generally, for a finite set of prime numbers S, A is said to be S-cyclic if it is l-cyclic for every l is an element of S. We give lower and upper bounds on the fraction of S-cyclic g-dimensional isogeny classes of abelian varieties defined over the finite field F-q, when q tends to infinity. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Abelian varieties of prescribed order over finite fields
    van Bommel, Raymond
    Costa, Edgar
    Li, Wanlin
    Poonen, Bjorn
    Smith, Alexander
    MATHEMATISCHE ANNALEN, 2025, 392 (01) : 1167 - 1202
  • [32] The groups of points on abelian varieties over finite fields
    Rybakov, Sergey
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2010, 8 (02): : 282 - 288
  • [33] On Counting Certain Abelian Varieties Over Finite Fields
    Jiang Wei Xue
    Chia Fu Yu
    Acta Mathematica Sinica, English Series, 2021, 37 : 205 - 228
  • [34] On Counting Certain Abelian Varieties Over Finite Fields
    Xue, Jiang Wei
    Yu, Chia Fu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2021, 37 (01) : 205 - 228
  • [35] CATEGORIES OF ABELIAN VARIETIES OVER FINITE FIELDS II: ABELIAN VARIETIES OVER Fq AND MORITA EQUIVALENCE
    Centeleghe, Tommaso Giorgio
    Stix, Jakob
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 257 (01) : 103 - 170
  • [36] Kummer theory for abelian varieties over local fields
    Coates, J
    Greenberg, R
    INVENTIONES MATHEMATICAE, 1996, 124 (1-3) : 129 - 174
  • [37] Varieties with few characters defined over finite fields
    Ballico, E.
    Cossidente, A.
    JOURNAL OF GEOMETRY, 2010, 97 (1-2) : 1 - 15
  • [38] On the order of CM abelian varieties over finite prime fields
    Spreckels, Ute
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 386 - 405
  • [39] ABELIAN SURFACES AND JACOBIAN VARIETIES OVER FINITE-FIELDS
    RUCK, HG
    COMPOSITIO MATHEMATICA, 1990, 76 (03) : 351 - 366
  • [40] On the number of points on abelian and Jacobian varieties over finite fields
    Aubry, Yves
    Haloui, Safia
    Lachaud, Gilles
    ACTA ARITHMETICA, 2013, 160 (03) : 201 - 241