Abelian varieties of prescribed order over finite fields

被引:0
|
作者
van Bommel, Raymond [1 ,2 ]
Costa, Edgar [1 ]
Li, Wanlin [3 ,4 ]
Poonen, Bjorn [1 ]
Smith, Alexander [1 ,5 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Univ Bristol, Fry Bldg,Woodland Rd, Bristol BS8 1UG, England
[3] Univ Montreal, Ctr Rech Math, 2920 Chemin Tour, Montreal, PQ H3T 1J4, Canada
[4] Washington Univ, Dept Math, St Louis, MO 63130 USA
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
POLYNOMIALS;
D O I
10.1007/s00208-024-03084-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime power q and n >> 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \gg 1$$\end{document}, we prove that every integer in a large subinterval of the Hasse-Weil interval [(q-1)2n,(q+1)2n]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[(\sqrt{q}-1)<^>{2n},(\sqrt{q}+1)<^>{2n}]$$\end{document} is #A(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#A({\mathbb {F}}_q)$$\end{document} for some ordinary geometrically simple principally polarized abelian variety A of dimension n over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}. As a consequence, we generalize a result of Howe and Kedlaya for F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_2$$\end{document} to show that for each prime power q, every sufficiently large positive integer is realizable, i.e., #A(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\#A({\mathbb {F}}_q)$$\end{document} for some abelian variety A over Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_q$$\end{document}. Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse-Weil interval. A separate argument determines, for fixed n, the largest subinterval of the Hasse-Weil interval consisting of realizable integers, asymptotically as q ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \rightarrow \infty $$\end{document}; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if q <= 5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q \le 5$$\end{document}, then every positive integer is realizable, and for arbitrary q, every positive integer >= q3qlogq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge q<^>{3 \sqrt{q} \log q}$$\end{document} is realizable.
引用
收藏
页码:1167 / 1202
页数:36
相关论文
共 50 条