Symmetry Results in Two-Dimensional Inequalities for Aharonov-Bohm Magnetic Fields

被引:7
|
作者
Bonheure, Denis [1 ]
Dolbeault, Jean [2 ]
Esteban, Maria J. [2 ]
Laptev, Ari [3 ]
Loss, Michael [4 ]
机构
[1] Univ Libre Bruxelles, Fac Sci, Dept Math, Campus Plaine CP 213,Bld Triomphe, Brussels 1050, Belgium
[2] PSL Univ, Univ Paris Dauphine, CEREMADE CNRS UMR 7534, Pl Lattre Tassigny, Paris 75775 16, France
[3] Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[4] Georgia Inst Technol, Sch Math, Skiles Bldg, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
CAFFARELLI-KOHN-NIRENBERG; EXTREMAL-FUNCTIONS; SHARP CONSTANTS; EQUATIONS; BREAKING; SOBOLEV;
D O I
10.1007/s00220-019-03560-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schrodinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thirring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
引用
收藏
页码:2071 / 2087
页数:17
相关论文
共 50 条