Symmetry Results in Two-Dimensional Inequalities for Aharonov-Bohm Magnetic Fields

被引:7
|
作者
Bonheure, Denis [1 ]
Dolbeault, Jean [2 ]
Esteban, Maria J. [2 ]
Laptev, Ari [3 ]
Loss, Michael [4 ]
机构
[1] Univ Libre Bruxelles, Fac Sci, Dept Math, Campus Plaine CP 213,Bld Triomphe, Brussels 1050, Belgium
[2] PSL Univ, Univ Paris Dauphine, CEREMADE CNRS UMR 7534, Pl Lattre Tassigny, Paris 75775 16, France
[3] Imperial Coll London, Dept Math, Huxley Bldg,180 Queens Gate, London SW7 2AZ, England
[4] Georgia Inst Technol, Sch Math, Skiles Bldg, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
CAFFARELLI-KOHN-NIRENBERG; EXTREMAL-FUNCTIONS; SHARP CONSTANTS; EQUATIONS; BREAKING; SOBOLEV;
D O I
10.1007/s00220-019-03560-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper is devoted to the symmetry and symmetry breaking properties of a two-dimensional magnetic Schrodinger operator involving an Aharonov-Bohm magnetic vector potential. We investigate the symmetry properties of the optimal potential for the corresponding magnetic Keller-Lieb-Thirring inequality. We prove that this potential is radially symmetric if the intensity of the magnetic field is below an explicit threshold, while symmetry is broken above a second threshold corresponding to a higher magnetic field. The method relies on the study of the magnetic kinetic energy of the wave function and amounts to study the symmetry properties of the optimal functions in a magnetic Hardy-Sobolev interpolation inequality. We give a quantified range of symmetry by a non-perturbative method. To establish the symmetry breaking range, we exploit the coupling of the phase and of the modulus and also obtain a quantitative result.
引用
收藏
页码:2071 / 2087
页数:17
相关论文
共 50 条
  • [21] OBSERVATION OF AHARONOV-BOHM OSCILLATIONS IN A NARROW TWO-DIMENSIONAL ELECTRON-GAS
    WHARAM, DA
    PEPPER, M
    NEWBURY, R
    AHMED, H
    HASKO, DG
    PEACOCK, DC
    FROST, JEF
    RITCHIE, DA
    JONES, GAC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1989, 1 (21) : 3369 - 3373
  • [22] Photoionization cross section in a two-dimensional quantum ring: Aharonov-Bohm effect
    Xie, Wenfang
    SUPERLATTICES AND MICROSTRUCTURES, 2013, 58 : 94 - 100
  • [23] Investigation of the mesoscopic Aharonov-Bohm effect in low magnetic fields
    Hansen, AE
    Pedersen, S
    Kristensen, A
    Sorensen, CB
    Lindelof, PE
    PHYSICA E, 2000, 7 (3-4): : 776 - 780
  • [24] HARDY INEQUALITIES FOR A MAGNETIC GRUSHIN OPERATOR WITH AHARONOV-BOHM TYPE MAGNETIC FIELD
    Aermark, L.
    Laptev, A.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2012, 23 (02) : 203 - 208
  • [25] Isoperimetric Inequalities for the Magnetic Neumann and Steklov Problems with Aharonov-Bohm Magnetic Potential
    Colbois, Bruno
    Provenzano, Luigi
    Savo, Alessandro
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (11)
  • [26] Hardy type inequalities for Aharonov-Bohm magnetic potentials with multiple singularities
    Balinsky, AA
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (2-3) : 169 - 176
  • [27] Hardy inequalities with Aharonov-Bohm type magnetic field on the Heisenberg group
    Yingxiong Xiao
    Journal of Inequalities and Applications, 2015
  • [28] Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3
    Bonheure, Denis
    Dolbeault, Jean
    Esteban, Maria J.
    Laptev, Ari
    Loss, Michael
    REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (03)
  • [29] Nonlinear symmetry breaking of Aharonov-Bohm cages
    Gligoric, Goran
    Belicev, Petra P.
    Leykam, Daniel
    Maluckov, Aleksandra
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [30] Hardy inequalities with Aharonov-Bohm type magnetic field on the Heisenberg group
    Xiao, Yingxiong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,