Subexponential loss rate asymptotics for L,vy processes

被引:6
|
作者
Andersen, Lars Norvang [1 ,2 ]
机构
[1] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Bioinformat Res Ctr BiRC, DK-8000 Aarhus C, Denmark
关键词
Finite buffer; Heavy tails; Levy process; Local times; Loss rate; Pollaczeck-Khinchine formula; Subexponential distributions; QUEUE; FLUID;
D O I
10.1007/s00186-010-0335-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a L,vy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotics for the loss rate when K tends to infinity, when the mean of the L,vy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [41] On the Favorite Points of Symmetric Lévy Processes
    Bo Li
    Yimin Xiao
    Xiaochuan Yang
    Journal of Theoretical Probability, 2019, 32 : 1943 - 1972
  • [42] On Anticipative Girsanov Transformations for Lévy Processes
    Horst Osswald
    Journal of Theoretical Probability, 2009, 22 : 474 - 481
  • [43] Branching Processes in a Lévy Random Environment
    S. Palau
    J. C. Pardo
    Acta Applicandae Mathematicae, 2018, 153 : 55 - 79
  • [44] Harnack Inequalities for some Lévy Processes
    Ante Mimica
    Potential Analysis, 2010, 32 : 275 - 303
  • [45] Rejection sampling for tempered Lévy processes
    Michael Grabchak
    Statistics and Computing, 2019, 29 : 549 - 558
  • [46] On Anticipative Girsanov Transformations for L,vy Processes
    Osswald, Horst
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (02) : 474 - 481
  • [47] Uniform asymptotics for random time ruin probability with subexponential claims and constant interest rate
    Bai, Xiaodong
    Song, Lixin
    Wang, Yuebao
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (14) : 2976 - 2983
  • [48] Yaglom limit for unimodal Lévy processes
    Armstrong, Gavin
    Bogdan, Krzysztof
    Grzywny, Tomasz
    Lezaj, Lukasz
    Wang, Longmin
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (03): : 1688 - 1721
  • [49] Finite Variation of Fractional L,vy Processes
    Bender, Christian
    Lindner, Alexander
    Schicks, Markus
    JOURNAL OF THEORETICAL PROBABILITY, 2012, 25 (02) : 594 - 612
  • [50] Weighted empirical processes in the nonparametric inference for Lévy processes
    Buchmann B.
    Mathematical Methods of Statistics, 2009, 18 (4) : 281 - 309