Subexponential loss rate asymptotics for L,vy processes

被引:6
|
作者
Andersen, Lars Norvang [1 ,2 ]
机构
[1] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Bioinformat Res Ctr BiRC, DK-8000 Aarhus C, Denmark
关键词
Finite buffer; Heavy tails; Levy process; Local times; Loss rate; Pollaczeck-Khinchine formula; Subexponential distributions; QUEUE; FLUID;
D O I
10.1007/s00186-010-0335-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a L,vy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotics for the loss rate when K tends to infinity, when the mean of the L,vy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [21] On Approximation of Some Lévy Processes
    Taras, Dmytro Ivanenko
    Knopova, Victoria
    Platonov, Denis
    AUSTRIAN JOURNAL OF STATISTICS, 2024,
  • [22] Numerical methods for Lévy processes
    N. Hilber
    N. Reich
    C. Schwab
    C. Winter
    Finance and Stochastics, 2009, 13
  • [23] Perpetual Integrals for L,vy Processes
    Doring, Leif
    Kyprianou, Andreas E.
    JOURNAL OF THEORETICAL PROBABILITY, 2016, 29 (03) : 1192 - 1198
  • [24] Perpetual Integrals for Lévy Processes
    Leif Döring
    Andreas E. Kyprianou
    Journal of Theoretical Probability, 2016, 29 : 1192 - 1198
  • [25] Kato Classes for Lévy Processes
    Tomasz Grzywny
    Karol Szczypkowski
    Potential Analysis, 2017, 47 : 245 - 276
  • [26] A Construction of Reflecting Lévy Processes
    I. A. Ibragimov
    N. V. Smorodina
    M. M. Faddeev
    Doklady Mathematics, 2019, 99 : 71 - 74
  • [27] The multifractal nature of Lévy processes
    Stéphane Jaffard
    Probability Theory and Related Fields, 1999, 114 : 207 - 227
  • [28] On Exponential Functionals of Lévy Processes
    Anita Behme
    Alexander Lindner
    Journal of Theoretical Probability, 2015, 28 : 681 - 720
  • [29] Singularity sets of Lévy processes
    Arnaud Durand
    Probability Theory and Related Fields, 2009, 143 : 517 - 544
  • [30] On Exponential Functionals of L,vy Processes
    Behme, Anita
    Lindner, Alexander
    JOURNAL OF THEORETICAL PROBABILITY, 2015, 28 (02) : 681 - 720