Subexponential loss rate asymptotics for L,vy processes

被引:6
|
作者
Andersen, Lars Norvang [1 ,2 ]
机构
[1] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus C, Denmark
[2] Aarhus Univ, Bioinformat Res Ctr BiRC, DK-8000 Aarhus C, Denmark
关键词
Finite buffer; Heavy tails; Levy process; Local times; Loss rate; Pollaczeck-Khinchine formula; Subexponential distributions; QUEUE; FLUID;
D O I
10.1007/s00186-010-0335-0
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a L,vy process reflected in barriers at 0 and K > 0. The loss rate is the mean of the local time at K at time 1 when the process is started in stationarity, and is a natural continuous-time analogue of the stationary expected loss rate for a reflected random walk. We derive asymptotics for the loss rate when K tends to infinity, when the mean of the L,vy process is negative and the positive jumps are subexponential. In the course of this derivation, we achieve a formula, which is a generalization of the celebrated Pollaczeck-Khinchine formula.
引用
收藏
页码:91 / 108
页数:18
相关论文
共 50 条
  • [1] Subexponential loss rate asymptotics for Lévy processes
    Lars Nørvang Andersen
    Mathematical Methods of Operations Research, 2011, 73 : 91 - 108
  • [2] Precise Asymptotics for Lévy Processes
    Zhi Shui Hu
    Chun Su
    Acta Mathematica Sinica, English Series, 2007, 23 : 1265 - 1270
  • [3] Precise Asymptotics for Lévy Processes
    Zhi Shui HU
    Chun SU
    Acta Mathematica Sinica,English Series, 2007, 23 (07) : 1265 - 1270
  • [4] FFT network for interest rate derivatives with L,vy processes
    Chiu, Mei Choi
    Xu, Zhuolu
    Wong, Hoi Ying
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2017, 34 (03) : 675 - 710
  • [5] FFT network for interest rate derivatives with Lévy processes
    Mei Choi Chiu
    Zhuolu Xu
    Hoi Ying Wong
    Japan Journal of Industrial and Applied Mathematics, 2017, 34 : 675 - 710
  • [6] FFT network for interest rate derivatives with Lévy processes
    Department of Mathematics and Information Technology, Education University of Hong Kong, Tai Po, Hong Kong
    不详
    Jpn J. Ind. Appl. Math., 3 (675-710):
  • [7] On subexponential mixing rate for Markov processes
    Klokov, SA
    Veretennikov, AY
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2004, 49 (01) : 110 - 122
  • [8] Maximum loss and maximum gain of spectrally negative Lévy processes
    Ceren Vardar-Acar
    Mine Çağlar
    Extremes, 2017, 20 : 301 - 308
  • [9] Kac–Lévy Processes
    Nikita Ratanov
    Journal of Theoretical Probability, 2020, 33 : 239 - 267
  • [10] Asymptotics of One-Dimensional Lévy Approximations
    Arno Berger
    Chuang Xu
    Journal of Theoretical Probability, 2020, 33 : 1164 - 1195