Tensor canonical correlation analysis

被引:6
|
作者
Min, Eun Jeong [1 ]
Chi, Eric C. [2 ]
Zhou, Hua [3 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
来源
STAT | 2019年 / 8卷 / 01期
关键词
block coordinate ascent; CP decomposition; multidimensional array data; COVARIANCE-MATRIX; ASSOCIATION; SETS;
D O I
10.1002/sta4.253
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Canonical correlation analysis (CCA) is a multivariate analysis technique for estimating a linear relationship between two sets of measurements. Modern acquisition technologies, for example, those arising in neuroimaging and remote sensing, produce data in the form of multidimensional arrays or tensors. Classic CCA is not appropriate for dealing with tensor data due to the multidimensional structure and ultrahigh dimensionality of such modern data. In this paper, we present tensor CCA (TCCA) to discover relationships between two tensors while simultaneously preserving multidimensional structure of the tensors and utilizing substantially fewer parameters. Furthermore, we show how to employ a parsimonious covariance structure to gain additional stability and efficiency. We delineate population and sample problems for each model and propose efficient estimation algorithms with global convergence guarantees. Also we describe a probabilistic model for TCCA that enables the generation of synthetic data with desired canonical variates and correlations. Simulation studies illustrate the performance of our methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Canonical Correlation Analysis and climate research
    Gordon G. Liao
    ActaOceanologicaSinica, 1989, (03) : 351 - 358
  • [42] On Measure Transformed Canonical Correlation Analysis
    Todros, Koby
    Hero, Alfred O., III
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (09) : 4570 - 4585
  • [43] Regularized Generalized Canonical Correlation Analysis
    Arthur Tenenhaus
    Michel Tenenhaus
    Psychometrika, 2011, 76
  • [44] Empirical canonical correlation analysis in subspaces
    Pezeshki, A
    Scharf, LL
    Azimi-Sadjadi, MR
    Lundberg, M
    CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 994 - 997
  • [45] ESTIMATION OF DIMENSIONALITY IN CANONICAL CORRELATION ANALYSIS
    FUJIKOSHI, Y
    VEITCH, LG
    BIOMETRIKA, 1979, 66 (02) : 345 - 351
  • [46] Gaussian processes for canonical correlation analysis
    Fyfe, Colin
    Leen, Gayle
    Lai, Pei Ling
    NEUROCOMPUTING, 2008, 71 (16-18) : 3077 - 3088
  • [47] On the permutation test in canonical correlation analysis
    Yamada, T
    Sugiyama, T
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (08) : 2111 - 2123
  • [48] Regularized Generalized Canonical Correlation Analysis
    Tenenhaus, Arthur
    Tenenhaus, Michel
    PSYCHOMETRIKA, 2011, 76 (02) : 257 - 284
  • [49] Multiway generalized canonical correlation analysis
    Gloaguen, Arnaud
    Philippe, Cathy
    Frouin, Vincent
    Gennari, Giulia
    Dehaene-Lambertz, Ghislaine
    Le Brusquet, Laurent
    Tenenhaus, Arthur
    BIOSTATISTICS, 2022, 23 (01) : 240 - 256
  • [50] Deep Probabilistic Canonical Correlation Analysis
    Karami, Mahdi
    Schuurmans, Dale
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8055 - 8063