Tensor canonical correlation analysis

被引:6
|
作者
Min, Eun Jeong [1 ]
Chi, Eric C. [2 ]
Zhou, Hua [3 ]
机构
[1] Univ Penn, Dept Biostat Epidemiol & Informat, Philadelphia, PA 19104 USA
[2] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
[3] Univ Calif Los Angeles, Dept Biostat, Los Angeles, CA 90095 USA
来源
STAT | 2019年 / 8卷 / 01期
关键词
block coordinate ascent; CP decomposition; multidimensional array data; COVARIANCE-MATRIX; ASSOCIATION; SETS;
D O I
10.1002/sta4.253
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Canonical correlation analysis (CCA) is a multivariate analysis technique for estimating a linear relationship between two sets of measurements. Modern acquisition technologies, for example, those arising in neuroimaging and remote sensing, produce data in the form of multidimensional arrays or tensors. Classic CCA is not appropriate for dealing with tensor data due to the multidimensional structure and ultrahigh dimensionality of such modern data. In this paper, we present tensor CCA (TCCA) to discover relationships between two tensors while simultaneously preserving multidimensional structure of the tensors and utilizing substantially fewer parameters. Furthermore, we show how to employ a parsimonious covariance structure to gain additional stability and efficiency. We delineate population and sample problems for each model and propose efficient estimation algorithms with global convergence guarantees. Also we describe a probabilistic model for TCCA that enables the generation of synthetic data with desired canonical variates and correlations. Simulation studies illustrate the performance of our methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] INFERENCE IN CANONICAL CORRELATION ANALYSIS
    GLYNN, WJ
    MUIRHEAD, RJ
    JOURNAL OF MULTIVARIATE ANALYSIS, 1978, 8 (03) : 468 - 478
  • [22] Stochastic canonical correlation analysis
    Gao, Chao
    Garber, Dan
    Srebro, Nathan
    Wang, Jialei
    Wang, Weiran
    Journal of Machine Learning Research, 2019, 20
  • [23] Sparse canonical correlation analysis
    David R. Hardoon
    John Shawe-Taylor
    Machine Learning, 2011, 83 : 331 - 353
  • [24] Stochastic Canonical Correlation Analysis
    Gao, Chao
    Garber, Dan
    Srebro, Nathan
    Wang, Jialei
    Wang, Weiran
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20
  • [25] Sufficient Canonical Correlation Analysis
    Guo, Yiwen
    Ding, Xiaoqing
    Liu, Changsong
    Xue, Jing-Hao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (06) : 2610 - 2619
  • [26] Sparse canonical correlation analysis
    Hardoon, David R.
    Shawe-Taylor, John
    MACHINE LEARNING, 2011, 83 (03) : 331 - 353
  • [27] Bayesian canonical correlation analysis
    1600, Microtome Publishing (14):
  • [28] Nonparametric Canonical Correlation Analysis
    Michaeli, Tomer
    Wang, Weiran
    Livescu, Karen
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 48, 2016, 48
  • [29] Fair Canonical Correlation Analysis
    Zhoup, Zhuoping
    Tarzanagh, Davoud Ataee
    Hou, Bojian
    Tong, Boning
    Xu, Jia
    Feng, Yanbo
    Long, Qi
    Shen, Li
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [30] Ensemble canonical correlation analysis
    Sakar, C. Okan
    Kursun, Olcay
    Gurgen, Fikret
    APPLIED INTELLIGENCE, 2014, 40 (02) : 291 - 304