Output Feedback Control of the Kuramoto-Sivashinsky Equation

被引:0
|
作者
al Jamal, Rasha [1 ]
Morris, Kirsten [2 ]
机构
[1] Air Canada, Operat Excellence, Brampton, ON, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
关键词
BOUNDARY CONTROL; NONLINEAR STABILITY; STABILIZATION; SYSTEMS; PDES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Kuramoto-Sivashinsky equation is a nonlinear partial differential equation that models reaction-diffusion systems. The stability of the equilibria depends on the value of a positive parameter; the set of all constant equilibria are unstable when the instability parameter is less than 1. Stabilization of the Kuramoto-Sivashinsky equation using scalar output-feedback control is considered in this paper. This is done by stabilizing the corresponding linearized system. A finite-dimensional controller is then designed to stabilize the system. Frechet differentiability of the semigroup generated by the closed-loop system plays an important role in proving that this approach yields a locally stable equilibrium. The approach is illustrated with a numerical example.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [41] Dynamics of a nonlocal Kuramoto-Sivashinsky equation
    Duan, JQ
    Ervin, VJ
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (02) : 243 - 266
  • [42] Adaptive stabilization of the Kuramoto-Sivashinsky equation
    Kobayashi, T
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2002, 33 (03) : 175 - 180
  • [43] ON THE BIFURCATION PHENOMENA OF THE KURAMOTO-SIVASHINSKY EQUATION
    Feudel, Fred
    Feudel, Ulrike
    Brandenburg, Axel
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (05): : 1299 - 1303
  • [44] An exact solution to the Kuramoto-Sivashinsky equation
    Abdel-Hamid, Bishri
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1999, 263 (4-6): : 338 - 340
  • [45] Maximum principle for optimal boundary control of the Kuramoto-Sivashinsky equation
    Sun, Bing
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2010, 347 (02): : 467 - 482
  • [46] Feedback control of chaotic systems using multiple shooting shadowing and application to Kuramoto-Sivashinsky equation
    Shawki, Karim
    Papadakis, George
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2240):
  • [47] Distributed sampled-data control of Kuramoto-Sivashinsky equation
    Kang, Wen
    Fridman, Emilia
    AUTOMATICA, 2018, 95 : 514 - 524
  • [48] Set-point boundary control for a Kuramoto-Sivashinsky equation
    Byrnes, C. I.
    Gilliam, D. S.
    Hu, C.
    PROCEEDINGS OF THE 45TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2006, : 75 - +
  • [49] Zero dynamics boundary control for regulation of the Kuramoto-Sivashinsky equation
    Byrnes, C. I.
    Gilliam, D. S.
    Hu, C.
    Shubov, V. I.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (5-6) : 875 - 891
  • [50] Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
    Guzman, Patricio
    Marx, Swann
    Cerpa, Eduardo
    IFAC PAPERSONLINE, 2019, 52 (02): : 70 - 75