Output Feedback Control of the Kuramoto-Sivashinsky Equation

被引:0
|
作者
al Jamal, Rasha [1 ]
Morris, Kirsten [2 ]
机构
[1] Air Canada, Operat Excellence, Brampton, ON, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
关键词
BOUNDARY CONTROL; NONLINEAR STABILITY; STABILIZATION; SYSTEMS; PDES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Kuramoto-Sivashinsky equation is a nonlinear partial differential equation that models reaction-diffusion systems. The stability of the equilibria depends on the value of a positive parameter; the set of all constant equilibria are unstable when the instability parameter is less than 1. Stabilization of the Kuramoto-Sivashinsky equation using scalar output-feedback control is considered in this paper. This is done by stabilizing the corresponding linearized system. A finite-dimensional controller is then designed to stabilize the system. Frechet differentiability of the semigroup generated by the closed-loop system plays an important role in proving that this approach yields a locally stable equilibrium. The approach is illustrated with a numerical example.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [21] Dynamical correlations for the kuramoto-sivashinsky equation
    Kobayashi, Miki U.
    Fujisaka, Hirokazu
    PROGRESS OF THEORETICAL PHYSICS, 2007, 118 (06): : 1043 - 1052
  • [22] Feedback control of surface roughness in sputtering processes using the stochastic Kuramoto-Sivashinsky equation
    Lou, YM
    Christofides, PD
    COMPUTERS & CHEMICAL ENGINEERING, 2005, 29 (04) : 741 - 759
  • [23] Finite-dimensional feedback control of the 1-d Kuramoto-Sivashinsky equation
    Smaoui, N
    ISCCSP : 2004 FIRST INTERNATIONAL SYMPOSIUM ON CONTROL, COMMUNICATIONS AND SIGNAL PROCESSING, 2004, : 807 - 810
  • [24] INERTIAL MANIFOLDS FOR THE KURAMOTO-SIVASHINSKY EQUATION
    FOIAS, C
    NICOLAENKO, B
    SELL, GR
    TEMAM, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 301 (06): : 285 - 288
  • [25] New bounds for the Kuramoto-Sivashinsky equation
    Giacomelli, L
    Otto, F
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (03) : 297 - 318
  • [26] A note on the Kuramoto-Sivashinsky equation with discontinuity
    D'Ambrosio, Lorenzo
    Gallo, Marco
    Pugliese, Alessandro
    MATHEMATICS IN ENGINEERING, 2021, 3 (05):
  • [27] Generalized solutions to the Kuramoto-Sivashinsky equation
    Biagioni, HA
    Iorio, RJ
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1998, 6 (1-4) : 1 - 8
  • [28] Computational study of the Kuramoto-Sivashinsky equation
    Smyrlis, YS
    Papageorgiou, DT
    ADVANCES IN MULTI-FLUID FLOWS, 1996, : 426 - 432
  • [29] Scaling properties of the Kuramoto-Sivashinsky equation
    Li, J
    Sander, LM
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 507 - 514
  • [30] Dynamical bifurcation for the Kuramoto-Sivashinsky equation
    Zhang, Yindi
    Song, Lingyu
    Axia, Wang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (04) : 1155 - 1163