Output Feedback Control of the Kuramoto-Sivashinsky Equation

被引:0
|
作者
al Jamal, Rasha [1 ]
Morris, Kirsten [2 ]
机构
[1] Air Canada, Operat Excellence, Brampton, ON, Canada
[2] Univ Waterloo, Dept Appl Math, Waterloo, ON, Canada
关键词
BOUNDARY CONTROL; NONLINEAR STABILITY; STABILIZATION; SYSTEMS; PDES;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Kuramoto-Sivashinsky equation is a nonlinear partial differential equation that models reaction-diffusion systems. The stability of the equilibria depends on the value of a positive parameter; the set of all constant equilibria are unstable when the instability parameter is less than 1. Stabilization of the Kuramoto-Sivashinsky equation using scalar output-feedback control is considered in this paper. This is done by stabilizing the corresponding linearized system. A finite-dimensional controller is then designed to stabilize the system. Frechet differentiability of the semigroup generated by the closed-loop system plays an important role in proving that this approach yields a locally stable equilibrium. The approach is illustrated with a numerical example.
引用
收藏
页码:567 / 571
页数:5
相关论文
共 50 条
  • [1] Feedback control of the Kuramoto-Sivashinsky equation
    Christofides, PD
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 4646 - 4651
  • [2] Feedback control of the Kuramoto-Sivashinsky equation
    Armaou, A
    Christofides, PD
    PHYSICA D, 2000, 137 (1-2): : 49 - 61
  • [3] Bounded output feedback control of the Kuramoto-Sivashinsky equation with input constraints
    Armaou, A
    Christofides, PD
    PROCEEDINGS OF THE 2001 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2001, : 1936 - 1941
  • [4] Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control
    Christofides, PD
    Armaou, A
    SYSTEMS & CONTROL LETTERS, 2000, 39 (04) : 283 - 294
  • [5] Local Output Feedback Stabilization of a Nonlinear Kuramoto-Sivashinsky Equation
    Lhachemi, Hugo
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (12) : 8165 - 8170
  • [6] ON THE CONTROL OF THE LINEAR KURAMOTO-SIVASHINSKY EQUATION
    Cerpa, Eduardo
    Guzman, Patricio
    Mercado, Alberto
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (01) : 165 - 194
  • [7] Robust control of the Kuramoto-Sivashinsky equation
    Hu, CB
    Temam, R
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2001, 8 (03): : 315 - 338
  • [8] Reduced-order-based feedback control of the Kuramoto-Sivashinsky equation
    Lee, CH
    Tran, HT
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 173 (01) : 1 - 19
  • [9] A Single Input-Feedback Control of the Generalized Kuramoto-Sivashinsky Equation
    Al Jamal, R.
    Smaoui, N.
    Automation, Robotics and Communications for Industry 4.0/5.0, 2023, 2023 : 127 - 131
  • [10] Feedback semiglobal stabilization to trajectories for the Kuramoto-Sivashinsky equation
    Rodrigues, Sergio S.
    Seifu, Dagmawi A.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2023, 40 (01) : 38 - 80