Option Pricing, Model Calibration, and Prediction with a Switchable Market: A Stochastic Approximation Algorithm

被引:0
|
作者
Yin, G. [1 ]
Yu, J. [2 ]
Zhang, Q. [3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Roosevelt Univ, Dept Math & Actuarial Sci, Chicago, IL 60605 USA
[3] Univ Georgia, Boyd GSRC, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Option pricing; parameter estimation; market mode prediction; stochastic approximation; convergence; rate of convergence;
D O I
10.1109/CDC.2010.5717667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers option pricing under a regime-switching model. The switching process takes two different modes, and the underlying stock price evolves in accordance with the two modes dictated by a continuous-time, 2-state Markov chain. At a given instance, the price follows either a model of geometric Brownian motion or mean-reversion model on its market mode. We build stochastic approximation algorithms for model calibration. Convergence and rate of convergence are provided. Option market data are used to predict future market mode.
引用
收藏
页码:6997 / 7002
页数:6
相关论文
共 50 条
  • [41] Option pricing in a sentiment-biased stochastic volatility model
    Cretarola, Alessandra
    Figa-Talamanca, Gianna
    Patacca, Marco
    ANNALS OF FINANCE, 2025, 21 (01) : 69 - 95
  • [42] A binomial option pricing model under stochastic volatility and jump
    Chang, CC
    Fu, HC
    CANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES-REVUE CANADIENNE DES SCIENCES DE L ADMINISTRATION, 2001, 18 (03): : 192 - 203
  • [43] Barrier option pricing and hedging model under stochastic conditions
    Zhao, Yuxin
    Yang, Jianhui
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2025,
  • [44] Option pricing under a financial model with stochastic interest rate
    Soleymani, Fazlollah
    SECOND INTERNATIONAL CONFERENCE OF MATHEMATICS (SICME2019), 2019, 2096
  • [45] Stochastic Stock Process and Its Option Pricing for a Risk Aversion Stock Market
    Wang, Jun
    Wang, Juan
    Fan, Bingli
    2008 IEEE SYMPOSIUM ON ADVANCED MANAGEMENT OF INFORMATION FOR GLOBALIZED ENTERPRISES, PROCEEDINGS, 2008, : 26 - 30
  • [46] Pricing Option on Jump Diffusion and Stochastic Interest Rates Model
    Peng, Bo
    Wu, Zhihui
    INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 723 - +
  • [47] LSM Algorithm for Pricing American Option Under Heston–Hull–White’s Stochastic Volatility Model
    O. Samimi
    Z. Mardani
    S. Sharafpour
    F. Mehrdoust
    Computational Economics, 2017, 50 : 173 - 187
  • [48] Static and dynamic SABR stochastic volatility models: Calibration and option pricing using GPUs
    Fernandez, J. L.
    Ferreiro, A. M.
    Garcia-Rodriguez, J. A.
    Leitao, A.
    Lopez-Salas, J. G.
    Vazquez, C.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 94 : 55 - 75
  • [49] A Monte Carlo multi-asset option pricing approximation for general stochastic processes
    Arismendi, Juan
    De Genaro, Alan
    CHAOS SOLITONS & FRACTALS, 2016, 88 : 75 - 99
  • [50] Quantifying the Model Risk Inherent in the Calibration and Recalibration of Option Pricing Models
    Feng, Yu
    Rudd, Ralph
    Baker, Christopher
    Mashalaba, Qaphela
    Mavuso, Melusi
    Schlogl, Erik
    RISKS, 2021, 9 (01) : 1 - 20