Option Pricing, Model Calibration, and Prediction with a Switchable Market: A Stochastic Approximation Algorithm

被引:0
|
作者
Yin, G. [1 ]
Yu, J. [2 ]
Zhang, Q. [3 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
[2] Roosevelt Univ, Dept Math & Actuarial Sci, Chicago, IL 60605 USA
[3] Univ Georgia, Boyd GSRC, Dept Math, Athens, GA 30602 USA
基金
美国国家科学基金会;
关键词
Option pricing; parameter estimation; market mode prediction; stochastic approximation; convergence; rate of convergence;
D O I
10.1109/CDC.2010.5717667
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers option pricing under a regime-switching model. The switching process takes two different modes, and the underlying stock price evolves in accordance with the two modes dictated by a continuous-time, 2-state Markov chain. At a given instance, the price follows either a model of geometric Brownian motion or mean-reversion model on its market mode. We build stochastic approximation algorithms for model calibration. Convergence and rate of convergence are provided. Option market data are used to predict future market mode.
引用
收藏
页码:6997 / 7002
页数:6
相关论文
共 50 条
  • [21] European option pricing model in a stochastic and fuzzy environment
    Wen-qiong Liu
    Sheng-hong Li
    Applied Mathematics-A Journal of Chinese Universities, 2013, 28 : 321 - 334
  • [22] PRICING EXOTIC OPTION UNDER STOCHASTIC VOLATILITY MODEL
    Li, Pengshi
    E & M EKONOMIE A MANAGEMENT, 2019, 22 (04): : 134 - 144
  • [23] Option pricing in a regime switching stochastic volatility model
    Biswas, Arunangshu
    Goswami, Anindya
    Overbeck, Ludger
    STATISTICS & PROBABILITY LETTERS, 2018, 138 : 116 - 126
  • [24] European option pricing model in a stochastic and fuzzy environment
    Liu Wen-qiong
    Li Sheng-hong
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (03) : 321 - 334
  • [25] Numerical solution for option pricing with stochastic volatility model
    Mariani, Andi
    Nugrahani, Endar H.
    Lesmana, Donny C.
    WORKSHOP AND INTERNATIONAL SEMINAR ON SCIENCE OF COMPLEX NATURAL SYSTEMS, 2016, 31
  • [26] OPTION PRICING UNDER THE FRACTIONAL STOCHASTIC VOLATILITY MODEL
    Han, Y.
    Li, Z.
    Liu, C.
    ANZIAM JOURNAL, 2021, 63 (02): : 123 - 142
  • [27] A Stochastic Volatility Model With Realized Measures for Option Pricing
    Bormetti, Giacomo
    Casarin, Roberto
    Corsi, Fulvio
    Livieri, Giulia
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2020, 38 (04) : 856 - 871
  • [28] Option pricing for a stochastic volatility Levy model with stochastic interest rates
    Sattayatham, P.
    Pinkham, S.
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2013, 42 (01) : 25 - 36
  • [29] Stochastic Volatility and Option Pricing in the Brazilian Stock Market: An Empirical Investigation
    Rodrigues de Almeida, Caio Ibsen
    Dana, Samy
    JOURNAL OF EMERGING MARKET FINANCE, 2005, 4 (02) : 169 - 206
  • [30] A decomposition formula for option prices in the Heston model and applications to option pricing approximation
    Elisa Alòs
    Finance and Stochastics, 2012, 16 : 403 - 422