The topological entropy of invertible cellular automata

被引:13
|
作者
Akin, Hasan [1 ]
机构
[1] Harran Univ, Arts & Sci Fac, Dept Math, TR-63120 Sanliurfa, Turkey
关键词
invertible cellular automata; topological entropy;
D O I
10.1016/j.cam.2007.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the topological entropy of invertible one-dimensional linear cellular automata, i.e., the maps T-f[-r,T-r]:Z(m)(Z)-> Z(m)(Z) which are given by T-f[-r,T-r](x)=(y(n))(n)(infinity)=-infinity y(n)=f(x(n-r), ...,x(n+r))=Sigma(r)(i)=-r(n+i)(lambda ix) (mod m), x=(x(n))(n)(infinity)=-infinity is an element of Z(m)(z) and f: Z(m)(2r+1)-> Z(m), over the Z(m) (m >= 2) by means of algorithm defined by D'amica et al. [On computing the entropy of cellular automa, Theoret. Comput. Sci. 290 (2003) 1629-1646]. We prove that if a one-dimensional linear cellular automata is invertible, then the topological entropies of this cellular automata and its inverse are equal. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 50 条
  • [41] UNCONVENTIONAL INVERTIBLE BEHAVIORS IN REVERSIBLE ONE-DIMENSIONAL CELLULAR AUTOMATA
    Tuoh Mora, Juan Carlos Seck
    Gonzalez Hernandez, Manuel
    Martinez, Genaro Juarez
    Chapa Vergara, Sergio V.
    McIntosh, Harold V.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (12): : 3625 - 3632
  • [42] Invertible linear cellular automata over Zm:: Algorithmic and dynamical aspects
    Manzini, G
    Margara, L
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1998, 56 (01) : 60 - 67
  • [43] Some Ergodic Properties of One-Dimensional Invertible Cellular Automata
    Chang, Chih-Hung
    Akin, Hasan
    JOURNAL OF CELLULAR AUTOMATA, 2016, 11 (2-3) : 247 - 261
  • [44] REPRESENTATIONS OF GEOMETRICAL AND TOPOLOGICAL QUANTITIES IN CELLULAR AUTOMATA
    SMITH, MA
    PHYSICA D-NONLINEAR PHENOMENA, 1990, 45 (1-3) : 271 - 277
  • [45] Topological Dynamics of Cellular Automata: Dimension Matters
    Sablik, Mathieu
    Theyssier, Guillaume
    THEORY OF COMPUTING SYSTEMS, 2011, 48 (03) : 693 - 714
  • [46] Topological Dynamics of Cellular Automata: Dimension Matters
    Mathieu Sablik
    Guillaume Theyssier
    Theory of Computing Systems, 2011, 48 : 693 - 714
  • [47] Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics
    Marr, Carsten
    Huett, Marc-Thorsten
    ENTROPY, 2012, 14 (06) : 993 - 1010
  • [48] Connecting Elementary Cellular Automata: Topological Properties of In-between Automata
    Kosela, Piotr
    Bylina, Jaroslaw
    JOURNAL OF CELLULAR AUTOMATA, 2024, 17 (5-6) : 425 - 435
  • [49] PROPERTIES OF THE DIRECTIONAL ENTROPY FUNCTION FOR CELLULAR AUTOMATA
    SMILLIE, J
    LECTURE NOTES IN MATHEMATICS, 1988, 1342 : 689 - 705
  • [50] The Entropy and Reversibility of Cellular Automata on Cayley Tree
    Akin, Hasan
    Chang, Chih-Hung
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (04):