The topological entropy of invertible cellular automata

被引:13
|
作者
Akin, Hasan [1 ]
机构
[1] Harran Univ, Arts & Sci Fac, Dept Math, TR-63120 Sanliurfa, Turkey
关键词
invertible cellular automata; topological entropy;
D O I
10.1016/j.cam.2007.01.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the topological entropy of invertible one-dimensional linear cellular automata, i.e., the maps T-f[-r,T-r]:Z(m)(Z)-> Z(m)(Z) which are given by T-f[-r,T-r](x)=(y(n))(n)(infinity)=-infinity y(n)=f(x(n-r), ...,x(n+r))=Sigma(r)(i)=-r(n+i)(lambda ix) (mod m), x=(x(n))(n)(infinity)=-infinity is an element of Z(m)(z) and f: Z(m)(2r+1)-> Z(m), over the Z(m) (m >= 2) by means of algorithm defined by D'amica et al. [On computing the entropy of cellular automa, Theoret. Comput. Sci. 290 (2003) 1629-1646]. We prove that if a one-dimensional linear cellular automata is invertible, then the topological entropies of this cellular automata and its inverse are equal. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:501 / 508
页数:8
相关论文
共 50 条
  • [21] Rescaled entropy of cellular automata
    Burguet, David
    NONLINEARITY, 2021, 34 (07) : 4897 - 4922
  • [22] ENTROPY OF ADDITIVE CELLULAR AUTOMATA
    VOORHEES, B
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1989, 28 (11) : 1387 - 1396
  • [23] On computing the entropy of cellular automata
    D'amico, M
    Manzini, G
    Margara, L
    THEORETICAL COMPUTER SCIENCE, 2003, 290 (03) : 1629 - 1646
  • [24] Entropy of Multidimensional Cellular Automata
    Lakshtanov, E.
    Langvagen, E.
    PROBLEMS OF INFORMATION TRANSMISSION, 2006, 42 (01) : 38 - 45
  • [25] Entropy of multidimensional cellular automata
    E. L. Lakshtanov
    E. S. Langvagen
    Problems of Information Transmission, 2006, 42 : 38 - 45
  • [26] Dynamics and topological entropy of 1D Greenberg-Hastings cellular automata
    Kesseboehmer, M.
    Rademacher, J. D. M.
    Ulbrich, D.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (05) : 1397 - 1430
  • [27] On Completeness and Decidability of Phase Space Invertible Asynchronous Cellular Automata
    Wacker, Simon
    Worsch, Thomas
    FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 157 - 181
  • [28] Topological Conjugacy Classification of Cellular Automata
    Guan, Junbiao
    Shen, Shaowei
    2009 INTERNATIONAL WORKSHOP ON CHAOS-FRACTALS THEORIES AND APPLICATIONS (IWCFTA 2009), 2009, : 211 - +
  • [29] Topological dynamics of Nondeterministic Cellular Automata
    Di Lena, Pietro
    INFORMATION AND COMPUTATION, 2020, 274
  • [30] The Topological Pressure of Linear Cellular Automata
    Ban, Jung-Chao
    Chang, Chih-Hung
    ENTROPY, 2009, 11 (02): : 271 - 284