A semantic labeling framework for ALS point clouds based on discretization and CNN

被引:0
|
作者
Wang, Xingtao [1 ]
Fan, Xiaopeng [1 ]
Zhao, Debin [1 ]
机构
[1] Harbin Inst Technol, Pengcheng Labratory, Shenzhen, Peoples R China
基金
美国国家科学基金会;
关键词
ALS point clouds; Semantic labeling; Discretization; CNN; NETWORK;
D O I
10.1109/vcip49819.2020.9301759
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The airborne laser scanning (ALS) point cloud has drawn increasing attention thanks to its capability to quickly acquire large-scale and high-precision ground information. Due to the complexity of observed scenes and the irregularity of point distribution, the semantic labeling of ALS point clouds is extremely challenging. In this paper, we introduce an efficient discretization based framework according to the geometric character of ALS point clouds, and propose an original intra-class weighted cross entropy loss function to solve the problem of data imbalance. We evaluate our framework on the ISPRS (International Society for Photogrammetry and Remote Sensing) 3D Semantic Labeling dataset. The experimental results show that the proposed method has achieved a new state-of-the-art performance in terms of overall accuracy (85.3%) and average F1 score (74.1%).
引用
收藏
页码:58 / 61
页数:4
相关论文
共 50 条
  • [1] A DEEP ACTIVE LEARNING FRAMEWORK FOR SEMANTIC LABELING OF POINT CLOUDS
    Wu, Hongjing
    Luo, Huan
    Guo, Wenzhong
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 966 - 969
  • [2] A Multi-Primitive-Based Hierarchical Optimal Approach for Semantic Labeling of ALS Point Clouds
    Ge, Xuming
    Wu, Bo
    Li, Yuan
    Hu, Han
    REMOTE SENSING, 2019, 11 (10)
  • [3] A Convolutional Neural Network-Based 3D Semantic Labeling Method for ALS Point Clouds
    Yang, Zhishuang
    Jiang, Wanshou
    Xu, Bo
    Zhu, Quansheng
    Jiang, San
    Huang, Wei
    REMOTE SENSING, 2017, 9 (09)
  • [4] ACTIVE SEMANTIC LABELING OF STREET VIEW POINT CLOUDS
    Zhou, Yang
    Shen, Shuhan
    Hu, Zhanyi
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1588 - 1593
  • [5] Semantic labeling of lidar point clouds for UAV applications
    Axelsson, Maria
    Holmberg, Max
    Serra, Sabina
    Ovren, Hannes
    Tulldahl, Michael
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, : 4309 - 4316
  • [6] A convolutional neural network-based semantic clustering method for als point clouds
    Li, Zezhou
    Tan, Tianran
    Yuan, Yizhe
    Yin, Changqing
    Communications in Computer and Information Science, 2019, 1138 CCIS : 228 - 240
  • [7] Weakly-Supervised Semantic Segmentation of ALS Point Clouds Based on Auxiliary Line and Plane Point Prediction
    Chen, Jintao
    Zhang, Yan
    Ma, Feifan
    Huang, Kun
    Tan, Zhuangbin
    Qi, Yuanjie
    Li, Jing
    IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17 : 18096 - 18111
  • [8] Semantic supported urban change detection using ALS point clouds
    Fang, Li
    Liu, Jinzhou
    Pan, Yue
    Ye, Zhen
    Tong, Xiaohua
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 118
  • [9] Hybrid CNN-LSTM Architecture for LiDAR Point Clouds Semantic Segmentation
    Wen, Shuhuan
    Wang, Tao
    Tao, Sheng
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03): : 5811 - 5818
  • [10] A Semantic Modelling Framework-Based Method for Building Reconstruction from Point Clouds
    Wang, Qingdong
    Yan, Li
    Zhang, Li
    Ai, Haibin
    Lin, Xiangguo
    REMOTE SENSING, 2016, 8 (09):