Semantic labeling of lidar point clouds for UAV applications

被引:5
|
作者
Axelsson, Maria [1 ]
Holmberg, Max [1 ]
Serra, Sabina [1 ]
Ovren, Hannes [1 ]
Tulldahl, Michael [1 ]
机构
[1] Swedish Def Res Agcy FOI, Linkoping, Sweden
关键词
D O I
10.1109/CVPRW53098.2021.00487
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Small Unmanned Aerial Vehicle (UAV) platforms equipped with compact laser scanners provides a low-cost option for many applications, including surveillance, mapping, and reconnaissance. For these applications, semantic segmentation or semantic labeling of each point in the lidar point cloud, is important for scene-understanding. In this work, we evaluate methods for semantic segmentation of three-dimensional (3D) point clouds of outdoor scenes measured with a laser scanner mounted on a small UAV. We compare the performance of four different semantic segmentation methods, which are all applied in a scan-byscan fashion, on semi-sparse laser data. The best method achieves 95.3% on the three classes ground, vegetation, and vehicle in terms of mean intersection over union (mIoU) on a previously unseen scene from a different geographical area. The results demonstrate that it is possible to achieve good performance on the semantic segmentation task on data measured using a combination of a small UAV and a compact laser scanner.
引用
下载
收藏
页码:4309 / 4316
页数:8
相关论文
共 50 条
  • [1] Semantic Labeling of Mobile LiDAR Point Clouds via Active Learning and Higher Order MRF
    Luo, Huan
    Wang, Cheng
    Wen, Chenglu
    Zai, Dawei
    Yu, Yongtao
    Li, Jonathan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07): : 3631 - 3644
  • [2] A hierarchical deep neural network with iterative features for semantic labeling of airborne LiDAR point clouds
    Yang, Yetao
    Tang, Rongkui
    Wang, Jinglei
    Xia, Mengjiao
    COMPUTERS & GEOSCIENCES, 2021, 157
  • [3] PROCESSING UAV AND LIDAR POINT CLOUDS IN GRASS GIS
    Petras, V.
    Petrasova, A.
    Jeziorska, J.
    Mitasova, H.
    XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 945 - 952
  • [4] Patch-Based Semantic Labeling of Road Scene Using Colorized Mobile LiDAR Point Clouds
    Luo, Huan
    Wang, Cheng
    Wen, Chenglu
    Cai, Zhipeng
    Chen, Ziyi
    Wang, Hanyun
    Yu, Yongtao
    Li, Jonathan
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2016, 17 (05) : 1286 - 1297
  • [5] ACTIVE SEMANTIC LABELING OF STREET VIEW POINT CLOUDS
    Zhou, Yang
    Shen, Shuhan
    Hu, Zhanyi
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 1588 - 1593
  • [6] Interdimensional Knowledge Transfer for Semantic Segmentation on LiDAR Point Clouds
    Ha, Seongheon
    Kim, Yeogyeong
    Park, Jinsun
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (09): : 7501 - 7508
  • [7] Semantic Segmentation of Airborne LiDAR Point Clouds With Noisy Labels
    Gao, Yuan
    Xia, Shaobo
    Wang, Cheng
    Xi, Xiaohuan
    Yang, Bisheng
    Xie, Chou
    IEEE Transactions on Geoscience and Remote Sensing, 2024, 62
  • [8] Open-world Semantic Segmentation for LIDAR Point Clouds
    Cen, Jun
    Yun, Peng
    Zhang, Shiwei
    Cai, Junhao
    Luan, Di
    Tang, Mingqian
    Liu, Ming
    Wang, Michael Yu
    COMPUTER VISION, ECCV 2022, PT XXXVIII, 2022, 13698 : 318 - 334
  • [9] DeepSIR: Deep semantic iterative registration for LiDAR point clouds
    Li, Qing
    Wang, Cheng
    Wen, Chenglu
    Li, Xin
    PATTERN RECOGNITION, 2023, 137
  • [10] Landing Zone Identification for Autonomous UAV Applications Using Fused Hyperspectral Imagery and LIDAR Point Clouds
    Lane, Sarah
    Kira, Zsolt
    James, Ryan
    Carr, Domenic
    Tuell, Grady
    ALGORITHMS AND TECHNOLOGIES FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY XXIV, 2018, 10644