A semantic labeling framework for ALS point clouds based on discretization and CNN

被引:0
|
作者
Wang, Xingtao [1 ]
Fan, Xiaopeng [1 ]
Zhao, Debin [1 ]
机构
[1] Harbin Inst Technol, Pengcheng Labratory, Shenzhen, Peoples R China
基金
美国国家科学基金会;
关键词
ALS point clouds; Semantic labeling; Discretization; CNN; NETWORK;
D O I
10.1109/vcip49819.2020.9301759
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The airborne laser scanning (ALS) point cloud has drawn increasing attention thanks to its capability to quickly acquire large-scale and high-precision ground information. Due to the complexity of observed scenes and the irregularity of point distribution, the semantic labeling of ALS point clouds is extremely challenging. In this paper, we introduce an efficient discretization based framework according to the geometric character of ALS point clouds, and propose an original intra-class weighted cross entropy loss function to solve the problem of data imbalance. We evaluate our framework on the ISPRS (International Society for Photogrammetry and Remote Sensing) 3D Semantic Labeling dataset. The experimental results show that the proposed method has achieved a new state-of-the-art performance in terms of overall accuracy (85.3%) and average F1 score (74.1%).
引用
收藏
页码:58 / 61
页数:4
相关论文
共 50 条
  • [31] Semantic Segmentation on Radar Point Clouds
    Schumann, Ole
    Hahn, Markus
    Dickmann, Juergen
    Woehler, Christian
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 2179 - 2186
  • [32] SEMANTIC INTERPRETATION OF INSAR POINT CLOUDS
    Wang, Yuanyuan
    Zhu, Xiao Xiang
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 5019 - 5022
  • [33] Dynamic Graph CNN for Learning on Point Clouds
    Wang, Yue
    Sun, Yongbin
    Liu, Ziwei
    Sarma, Sanjay E.
    Bronstein, Michael M.
    Solomon, Justin M.
    ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (05):
  • [34] Open-set Semantic Segmentation for Point Clouds via Adversarial Prototype Framework
    Li, Jianan
    Dong, Qiulei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 9425 - 9434
  • [35] Point-based Attention Convolutional Neural Networks for Point Clouds Semantic Segmentation
    Li, Ying
    Li, Qing
    ACM International Conference Proceeding Series, 2022, : 1642 - 1647
  • [36] A point-based deep learning network for semantic segmentation of MLS point clouds
    Han, Xu
    Dong, Zhen
    Yang, Bisheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 175 : 199 - 214
  • [37] Specific object finding in point clouds based on semantic segmentation and iterative closest point
    Lopez, Daniel
    Haas, Carl
    Narasimhan, Sriram
    AUTOMATION IN CONSTRUCTION, 2023, 156
  • [38] A multi-scale fully convolutional network for semantic labeling of 3D point clouds
    Yousefhussien, Mohammed
    Kelbe, David J.
    Lentilucci, Emmett J.
    Salvaggio, Carl
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 143 : 191 - 204
  • [39] A Semantic Labeling Strategy to Reject Unknown Objects in Large Scale 3D Point Clouds
    Ma, Huifang
    Shi, Lei
    Kodagoda, Sarath
    Xiong, Rong
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 7070 - 7075
  • [40] Semantic segmentation of point clouds of ancient buildings based on weak supervision
    Zhao, Jianghong
    Yu, Haiquan
    Hua, Xinnan
    Wang, Xin
    Yang, Jia
    Zhao, Jifu
    Xu, Ailin
    HERITAGE SCIENCE, 2024, 12 (01):