kLogNLP: Graph Kernel-based Relational Learning of Natural Language

被引:0
|
作者
Verbeke, Mathias [1 ]
Frasconi, Paolo [2 ]
De Grave, Kurt [1 ]
Costa, Fabrizio [3 ]
De Raedt, Luc [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Leuven, Belgium
[2] Univ Firenze, Dipartimento Sistemi & Informat, Florence, Italy
[3] Albert Ludwigs Univ, Inst Informat, Freiburg, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
kLog is a framework for kernel-based learning that has already proven successful in solving a number of relational tasks in natural language processing. In this paper, we present kLogNLP, a natural language processing module for kLog. This module enriches kLog with NLP-specific preprocessors, enabling the use of existing libraries and toolkits within an elegant and powerful declarative machine learning framework. The resulting relational model of the domain can be extended by specifying additional relational features in a declarative way using a logic programming language. This declarative approach offers a flexible way of experimentation and a way to insert domain knowledge.
引用
收藏
页码:85 / 90
页数:6
相关论文
共 50 条
  • [31] SEMI-PARAMETRIC GRAPH KERNEL-BASED RECONSTRUCTION
    Ioannidis, Vassilis N.
    Nikolakopoulos, Athanasios N.
    Giannakis, Georgios B.
    [J]. 2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 588 - 592
  • [32] An Arabic natural language interface for querying relational databases based on natural language processing and graph theory methods
    Bais H.
    Machkour M.
    Koutti L.
    [J]. Bais, Hanane (baishanan@gmail.com), 2018, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (10) : 155 - 165
  • [33] Learning rates for kernel-based expectile regression
    Farooq, Muhammad
    Steinwart, Ingo
    [J]. MACHINE LEARNING, 2019, 108 (02) : 203 - 227
  • [34] Preimage Problem in Kernel-Based Machine Learning
    Honeine, Paul
    Richard, Cedric
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2011, 28 (02) : 77 - 88
  • [35] Kernel-based learning methods for preference aggregation
    Waegeman, Willem
    De Baets, Bernard
    Boullart, Luc
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2009, 7 (02): : 169 - 189
  • [36] Learning Rates of Kernel-Based Robust Classification
    Wang, Shuhua
    Sheng, Baohuai
    [J]. ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 1173 - 1190
  • [37] Biomedical literature mining: graph kernel-based learning for gene-gene interaction extraction
    Hsieh, Ai-Ru
    Tsai, Chen-Yu
    [J]. EUROPEAN JOURNAL OF MEDICAL RESEARCH, 2024, 29 (01)
  • [38] Multitask Kernel-based Learning with Logic Constraints
    Diligenti, Michelangelo
    Gori, Marco
    Maggini, Marco
    Rigutini, Leonardo
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 433 - 438
  • [39] Learning Rates of Kernel-Based Robust Classification
    Shuhua Wang
    Baohuai Sheng
    [J]. Acta Mathematica Scientia, 2022, 42 : 1173 - 1190
  • [40] Learning rates for kernel-based expectile regression
    Muhammad Farooq
    Ingo Steinwart
    [J]. Machine Learning, 2019, 108 : 203 - 227